求与圆(X-3)^2=Y^2=9外切,且与Y轴相切的动圆圆心的轨迹方程
1个回答
展开全部
与圆(X-3)^2+Y^2=9外切的圆的圆心为(x,y)
则此圆的半径为r,两圆心的距离为两圆的半径之和
即(r+3)^2=(x-3)^2+y^2
与Y轴相切,表明 r=|y|
代入得:(|y|+3)^2=(x-3)^2+y^2
6|y|+9=x^2-6x+9
得轨迹为:|y|=x^2/6-x
则此圆的半径为r,两圆心的距离为两圆的半径之和
即(r+3)^2=(x-3)^2+y^2
与Y轴相切,表明 r=|y|
代入得:(|y|+3)^2=(x-3)^2+y^2
6|y|+9=x^2-6x+9
得轨迹为:|y|=x^2/6-x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
东莞大凡
2024-11-14 广告
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询