求曲面积分,∫∫zds,Σ:z=根号X^2+y^2在柱体x^2+y^2
展开全部
∵z=√(x^2+y^2)
==>αz/αx=x/√(x^2+y^2),αz/αy=y/√(x^2+y^2)
∴ds=√[1+(αz/αx)^2+(αz/αy)^2]dxdy=√2dxdy
故 ∫∫zds=√2∫∫√(x^2+y^2)dxdy
=√2∫dθ∫r^2dr
=(8√2/3)∫(sinθ)^3dθ
=(8√2/3)∫[(cosθ)^2-1]d(cosθ)
=(8√2/3)(4/3)
=32√2/9.
==>αz/αx=x/√(x^2+y^2),αz/αy=y/√(x^2+y^2)
∴ds=√[1+(αz/αx)^2+(αz/αy)^2]dxdy=√2dxdy
故 ∫∫zds=√2∫∫√(x^2+y^2)dxdy
=√2∫dθ∫r^2dr
=(8√2/3)∫(sinθ)^3dθ
=(8√2/3)∫[(cosθ)^2-1]d(cosθ)
=(8√2/3)(4/3)
=32√2/9.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询