3个回答
2022-05-03
展开全部
f(x)=sinX · cos(X-π/3)
=sinX · [ (1/2)cosX+ (√3/2)sinX]
=(1/2)sinX · cosX +(√3/2)(sinX)^2
=(1/4)sin2X +(√3/4)[1-cos2X]
=(1/2)[ (1/2)sin2X - (√3/2)cos2X] +√3/4
=(1/2)sin(2x-π/3) +√3/4
所以原方程最小正周期=π
=sinX · [ (1/2)cosX+ (√3/2)sinX]
=(1/2)sinX · cosX +(√3/2)(sinX)^2
=(1/4)sin2X +(√3/4)[1-cos2X]
=(1/2)[ (1/2)sin2X - (√3/2)cos2X] +√3/4
=(1/2)sin(2x-π/3) +√3/4
所以原方程最小正周期=π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询