n开n次方的极限是什么?
展开全部
n开n次方的极限是1。
证明过程如下:
1、设a=n^(1/n)。所以a=e^(lnn/n),lim(n→∞)a=e^[lim(n→∞)lnn/n]。
2、而lim(n→∞)lnn/n属“∞/∞“型,用洛必达法则,lim(n→∞)lnn/n=lim(n→∞)1/n=0。
3、lim(n→∞)n^(1/n)=e^[lim(n→∞)lnn/n]=e^0=1。
求极限基本方法有:
1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。
2、无穷大根式减去无穷大根式时,分子有理化。
3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询