矩估计法是什么呢?
1个回答
展开全部
矩估计法是利用样本矩估计总体中相应参数。
对于随机变量来说,矩是其最广泛,最常用的数字特征,母体ξ的各阶矩一般与ξ的分布中所含的未知参数有关,有的甚至就等于未知参数。由辛钦大数定律知,简单随机子样的子样原点矩\bar{\xi^r}依概率收敛到相应的母体原点矩Eξr,r = 1,2,Λ。
这就启发我们想到用子样矩替换母体矩(今后称之为替换原则),进而找出未知参数的估计,基于这种思想求估计量的方法称为矩法。用矩法求得的估计称为矩法估计,简称矩估计。它是由英国统计学家皮尔逊Pearson于1894年提出的。
矩法估计的优缺点:
矩法估计原理简单、使用方便,使用时可以不知母体的分布,而且具有一定的优良性质(如矩估计为Eξ的一致最小方差无偏估计),因此在实际问题,特别是在教育统计问题中被广泛使用。
但在寻找参数的矩法估计量时,对母体原点矩不存在的分布如柯西分布等不能用,另一方面它只涉及母体的一些数字特征,并未用到母体的分布,因此矩法估计量实际上只集中了母体的部分信息,这样它在体现母体分布特征上往往性质较差,只有在样本容量n较大时,才能保障它的优良性,因而理论上讲,矩法估计是以大样本为应用对象的。
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询