limx→0 xsin1/x的极限是多少?
1个回答
展开全部
limx→0 xsin1/x的极限是当x→0+的时候,x的极限是0,是个无穷小。而sin(1/x)是有界函数。
是x→0的时候,sinx等价于x,不是x→0的时候,sin(1/x)等价于1/x当x→0的时候,x和sinx都是无穷小(极限是0),那么有可能成为等价无穷小,当然这两个也的确是等价无穷小。
数列极限:
设 {Xn} 为实数列,a 为定数.若对任给的正数 ε,总存在正整数N,使得当 n>N 时有∣Xn-a∣<ε 则称数列{Xn} 收敛于a,定数 a 称为数列 {Xn} 的极限,并记作,或Xn→a(n→∞)。
读作“当 n 趋于无穷大时,{Xn} 的极限等于 或 趋于 a”。
若数列 {Xn} 没有极限,则称 {Xn} 不收敛,或称 {Xn} 为发散数列。
该定义常称为数列极限的 ε—N定义。
对于收敛数列有以下两个基本性质,即收敛数列的唯一性和有界性。
定理1:如果数列{Xn}收敛,则其极限是唯一的。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询