已知1/a,1/b,1/c成等差数列,求证b+c/a,a+c/b,a+b/c成等差数列
1个回答
展开全部
1/a,1/b,1/c成等差数列
则 2/b=1/a+1/c
同时要证明(b+c)/a,(a+c)/b,(a+b)/c也成等差数列,
即证明
2*(a+c)/b=(b+c)/a+(a+b)/c
左边=(2/b)*(a+c)=(1/a+1/c)*(a+c)=2+a/c+c/a
右边=a/c+c/a+b*(1/a+1/c)=2+a/c+c/a
所以左边=右边
所以(b+c)/a,(a+c)/b,(a+b)/c成等差数列
则 2/b=1/a+1/c
同时要证明(b+c)/a,(a+c)/b,(a+b)/c也成等差数列,
即证明
2*(a+c)/b=(b+c)/a+(a+b)/c
左边=(2/b)*(a+c)=(1/a+1/c)*(a+c)=2+a/c+c/a
右边=a/c+c/a+b*(1/a+1/c)=2+a/c+c/a
所以左边=右边
所以(b+c)/a,(a+c)/b,(a+b)/c成等差数列
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询