已知y=f(x)是奇函数,它在(0,+00)上是增函数,且f(x)
1个回答
展开全部
证明:
先设x>=0,由题意,存在任意正数a
f(x+a)-f(x)>0 (1)
由于f是奇函数,那么f(-x-a)=-f(x+a),f(-x)=-f(x);
1/f(-x) - 1/f(-x-a) (2)
= f(-x-a)-f(-x)/f(-x)f(-x-a)
= -[f(x+a)-f(x)]/f(x)f(x+a)
由(1)以及f(x)f(x+a)>0可得(2)< 0
所以,在负无穷到0 f(x)=1/f(x)是减函数
先设x>=0,由题意,存在任意正数a
f(x+a)-f(x)>0 (1)
由于f是奇函数,那么f(-x-a)=-f(x+a),f(-x)=-f(x);
1/f(-x) - 1/f(-x-a) (2)
= f(-x-a)-f(-x)/f(-x)f(-x-a)
= -[f(x+a)-f(x)]/f(x)f(x+a)
由(1)以及f(x)f(x+a)>0可得(2)< 0
所以,在负无穷到0 f(x)=1/f(x)是减函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询