如何知道一个函数在哪个区间有界?

 我来答
惠企百科
2022-09-28 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

有界性的判断有很多方法,最直观的一个就是根据函数的单调性判断有界性,还有,诸如在闭区间上连续函数有界等等法则:针对本题:y=√(x+1)-√x=1/[√(x+1)+√x]

此函数在(1,∞)上是单调的减函数,所以,

上界当x=1时取到,y=√2-1;

下界当x->∞时取得,极限为0。

所以,此函数是有界的,y∈(0,√2-1)。

扩展资料:

函数的有界性举例:

一般来说,连续函数在闭区间具有有界性。 例如: y=x+6在[1,2]上有最小值7,最大值8,所以说它的函数值在7和8之间变化,是有界的,所以具有有界性。但正切函数在有意义区间,比如(-π/2,π/2)内则无界。

sinx,cosx,sin(1/x),cos(1/x), arcsinx,arccosx,arctanx,arccotx是常见的有界函数。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式