初一数学竞赛试题
一.选择题(每小题4分,共32分)1.x是任意实数,则2|x|+x的值().A.大于零B.不大于零C.小于零D.不小于零2.在-0.1428中用数字3替换其中的一个非0数...
一. 选择题(每小题4分,共32分)
1.x是任意实数,则2|x|+x 的值 ( ).
A.大于零 B. 不大于零 C.小于零 D.不小于零
2.在-0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的数字是( )
A.1 B.4 C.2 D.8
3.如图,在数轴上1, 的对应点A、B, A是线段BC的中点,则点C所表示的数是 ( )
A. B.
C. D.
4. 的最小值是 ( )
A. 4 B. 3 C. 2 D. 1
5.若m<0,n>0,m+n<0,则m,n,-m,-n这四个数的大小关系是 ( )
A.m>n>-n>-m B.-m>n>-n>m C.m>-m>n>-n D.-m>-n>n>m
6计算: 等于 ( )
A. B. C. D.
7.如图,三个天平的托盘中相同的物体质量相等。图⑴、⑵所示的两个天平处于平衡状态要使第三个天平也保持平衡,则需在它的右盘中放置 ( )
A. 3个球 B. 4个球 C. 5个球 D. 6个球
8.用火柴棒搭三角形时,大家都知道,3根火柴棒只能搭成1种三角形,不妨记作它的边长分别为1,1,1;4根火柴棒不能搭成三角形;5根火柴棒只能搭成一种三角形,其边长分别为2,2,1;6根火柴棒只能搭成一种三角形,其边长分别为2,2,2;7根火柴棒只能搭成2种三角形,其边长分别为3,3,1和3,2,2;…;那么30根火柴棒能搭成三角形个数是 ( )
A.15 B.16 C.18 D.19
二. 填空题(每题4分,共28分)
9.定义a*b=ab+a+b,若3*x=31,则x的值是____ _.
10.当x=-7时,代数式 的值为7,其中a、b、c为常数,当x=7时,这个代数式的值是 .
11.若A、B、C、D、E五名运动员进行乒乓球单循环赛(即每两人赛一场),比赛进行一段时间后进行过的场次数与队员的对照统计表如下:
选手 A B C D E
已赛过的场次数 4 3 2 1 2
那么与E进行过比赛的运动员是 .
12. 某班45人参加一次数学比赛,结果有35人答对了第一题,有27人答对了第二题,有41人答对了第三题,有38人答对了第四题,则这个班四道题都对的同学至少有 人.
13. 已知 S=12-22+32-42+……+20052-20062+20072,则S除以2005的余数是_____________.
14.长度相等而粗细不同的两支蜡烛,其中一支可燃3小时,另一支可燃4小时。将这两支蜡烛同时点燃,当余下的长度中,一支是另一支的3倍时,蜡烛点燃了___________小时.
15.定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为 (其中k是使 为奇数的正整数),并且运算重复进行.例如,取n=26,则:
若n=49,则第449次“F运算”的结果是_____________.
三. 解答题(共60分,要求写出解题的主要步骤)
16.(本题满分10分)某夏令营共8名营员,其中3人来自甲校,3人来自乙校,2人来自丙校.在一项游乐活动中,他们分乘4辆2座位的游乐车.为加强校际间交流,要求同一学校的营员必须分开乘车,每一辆车上的营员必须来自不同的学校.问这能够做到吗?若能,请设计一个乘车方案;若不能,请说明理由.
17.(本题满分10分)9. 右图中,在长方形内画了一些直线,已知边上有三块面积分别是13,35,49.求图中阴影部分的面积? 展开
1.x是任意实数,则2|x|+x 的值 ( ).
A.大于零 B. 不大于零 C.小于零 D.不小于零
2.在-0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的数字是( )
A.1 B.4 C.2 D.8
3.如图,在数轴上1, 的对应点A、B, A是线段BC的中点,则点C所表示的数是 ( )
A. B.
C. D.
4. 的最小值是 ( )
A. 4 B. 3 C. 2 D. 1
5.若m<0,n>0,m+n<0,则m,n,-m,-n这四个数的大小关系是 ( )
A.m>n>-n>-m B.-m>n>-n>m C.m>-m>n>-n D.-m>-n>n>m
6计算: 等于 ( )
A. B. C. D.
7.如图,三个天平的托盘中相同的物体质量相等。图⑴、⑵所示的两个天平处于平衡状态要使第三个天平也保持平衡,则需在它的右盘中放置 ( )
A. 3个球 B. 4个球 C. 5个球 D. 6个球
8.用火柴棒搭三角形时,大家都知道,3根火柴棒只能搭成1种三角形,不妨记作它的边长分别为1,1,1;4根火柴棒不能搭成三角形;5根火柴棒只能搭成一种三角形,其边长分别为2,2,1;6根火柴棒只能搭成一种三角形,其边长分别为2,2,2;7根火柴棒只能搭成2种三角形,其边长分别为3,3,1和3,2,2;…;那么30根火柴棒能搭成三角形个数是 ( )
A.15 B.16 C.18 D.19
二. 填空题(每题4分,共28分)
9.定义a*b=ab+a+b,若3*x=31,则x的值是____ _.
10.当x=-7时,代数式 的值为7,其中a、b、c为常数,当x=7时,这个代数式的值是 .
11.若A、B、C、D、E五名运动员进行乒乓球单循环赛(即每两人赛一场),比赛进行一段时间后进行过的场次数与队员的对照统计表如下:
选手 A B C D E
已赛过的场次数 4 3 2 1 2
那么与E进行过比赛的运动员是 .
12. 某班45人参加一次数学比赛,结果有35人答对了第一题,有27人答对了第二题,有41人答对了第三题,有38人答对了第四题,则这个班四道题都对的同学至少有 人.
13. 已知 S=12-22+32-42+……+20052-20062+20072,则S除以2005的余数是_____________.
14.长度相等而粗细不同的两支蜡烛,其中一支可燃3小时,另一支可燃4小时。将这两支蜡烛同时点燃,当余下的长度中,一支是另一支的3倍时,蜡烛点燃了___________小时.
15.定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为 (其中k是使 为奇数的正整数),并且运算重复进行.例如,取n=26,则:
若n=49,则第449次“F运算”的结果是_____________.
三. 解答题(共60分,要求写出解题的主要步骤)
16.(本题满分10分)某夏令营共8名营员,其中3人来自甲校,3人来自乙校,2人来自丙校.在一项游乐活动中,他们分乘4辆2座位的游乐车.为加强校际间交流,要求同一学校的营员必须分开乘车,每一辆车上的营员必须来自不同的学校.问这能够做到吗?若能,请设计一个乘车方案;若不能,请说明理由.
17.(本题满分10分)9. 右图中,在长方形内画了一些直线,已知边上有三块面积分别是13,35,49.求图中阴影部分的面积? 展开
4个回答
展开全部
1.D 2.B 3.没图 4.题目不全 5.B 6.题目不全 7无图 8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.D 2.D
5.B
5.B
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |