2个回答
展开全部
(1)由题意得(1-a)S(n)=-a[a(n)-1]
则S(n)=a[a(n)-1]/(a-1)
所以S(n-1)=a[a(n-1)-1]/(a-1)
作差可得S(n)-S(n-1)=a(n)= [a/(a-1)] [a(n)-a(n-1)]
则(a-1)×a(n)=a×[a(n)-a(n-1)]
所以a(n)=a×a(n-1),且S(1)=a(1)=a[S(1)-a(1)+],可得a(1)=a
所以a(n)=a^n;
(2)由题意知b(1)=[a(1)^2]+a(1)a(1)=2[a^2],
b(2)=[a(2)^2]+[a(1)+a(2)][a(2)]=2a^4+a^3
b(3)=[a(3)^2]+[a(1)+a(2)+a(3)][a(3)]=2a^6+a^5+a^4
则由[b(2)^2]=b(1)b(3)得
4a^8+2a^7+2a^6=4a^8+4a^7+a^6
解得a=1/2;
(3)c(n)=1/[(1/2)^n+1]-1/[(1/2)^(n+1)-1]
=(2^n)/(2^n+1)+[2^(n+1)]/[2^(n+1)-1]
=1-1/(2^n+1)+1+1/[2^(n+1)-1]
=2-1/(2^n+1)+1/[2^(n+1)-1]
其中-1/(2^n+1)+1/[2^(n+1)-1]
=-2[2^(n-1)-1]/(2^n+1)[2^(n+1)-1]
>-1/[2^(n+1)-1]
>-1/[2^(n+1)]
则c(n)>2-1/[2^(n+1)]
所以
T(n)>2-1/(2^2)+2-1/(2^3)+…+2-1/[2^(n+1)]
=2n-(1/4)[1-(1/2)^n]/[1-(1/2)]
=2n-(1/2)[1-(1/2)^n]
>2n-1/2
则S(n)=a[a(n)-1]/(a-1)
所以S(n-1)=a[a(n-1)-1]/(a-1)
作差可得S(n)-S(n-1)=a(n)= [a/(a-1)] [a(n)-a(n-1)]
则(a-1)×a(n)=a×[a(n)-a(n-1)]
所以a(n)=a×a(n-1),且S(1)=a(1)=a[S(1)-a(1)+],可得a(1)=a
所以a(n)=a^n;
(2)由题意知b(1)=[a(1)^2]+a(1)a(1)=2[a^2],
b(2)=[a(2)^2]+[a(1)+a(2)][a(2)]=2a^4+a^3
b(3)=[a(3)^2]+[a(1)+a(2)+a(3)][a(3)]=2a^6+a^5+a^4
则由[b(2)^2]=b(1)b(3)得
4a^8+2a^7+2a^6=4a^8+4a^7+a^6
解得a=1/2;
(3)c(n)=1/[(1/2)^n+1]-1/[(1/2)^(n+1)-1]
=(2^n)/(2^n+1)+[2^(n+1)]/[2^(n+1)-1]
=1-1/(2^n+1)+1+1/[2^(n+1)-1]
=2-1/(2^n+1)+1/[2^(n+1)-1]
其中-1/(2^n+1)+1/[2^(n+1)-1]
=-2[2^(n-1)-1]/(2^n+1)[2^(n+1)-1]
>-1/[2^(n+1)-1]
>-1/[2^(n+1)]
则c(n)>2-1/[2^(n+1)]
所以
T(n)>2-1/(2^2)+2-1/(2^3)+…+2-1/[2^(n+1)]
=2n-(1/4)[1-(1/2)^n]/[1-(1/2)]
=2n-(1/2)[1-(1/2)^n]
>2n-1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询