1个回答
展开全部
定义:若存在两个数A,B(设A<B),数列 中的每一项都在闭区间[A,B]内,亦即 ,则称 为有界数列.这时A称为它的下界,B称为它的上界
关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。
此时M只是一个存在的数,可以找到一个这样的数使得|f(x1)-f(x2)|<M成立
关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。
此时M只是一个存在的数,可以找到一个这样的数使得|f(x1)-f(x2)|<M成立
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询