方阵A满足A^2-2A-3E=0,证明A+2E可逆,并求其逆。
证明:由A^2-2A-3E=0,知(A+2E)(A-4E)=-5E,故A+2E可逆,且(A+2E)^-1=1/5(4E-A).为什么要凑成这样“(A+2E)(A-4E)=...
证明:由A^2-2A-3E=0,知(A+2E)(A-4E)=-5E,故A+2E可逆,且(A+2E)^-1=1/5(4E-A). 为什么要凑成这样“(A+2E)(A-4E)=-5E,故A+2E可逆,”做。怎么样就证明了A+2E可逆。
展开
展开全部
可逆矩阵的行列式不等于0
原式两边取行列式得
|A+2E||A-4E|=|-5E|不等于0
故|A+2E|,|A-4E|不等于0
即|A+2E|可逆
原式两边取行列式得
|A+2E||A-4E|=|-5E|不等于0
故|A+2E|,|A-4E|不等于0
即|A+2E|可逆
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
若方阵A、B满足AB=E,则两边取行列式可知
|A||B|=|AB|=|E|=1
因此|A|、|B|均不为零,从而A,B均可逆。
由逆阵的唯一性知A=B^(-1),B=A^(-1)
|A||B|=|AB|=|E|=1
因此|A|、|B|均不为零,从而A,B均可逆。
由逆阵的唯一性知A=B^(-1),B=A^(-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询