数列{an}的首项a1=1,前n项和Sn与an之间满足an=2Sn^2/2Sn -1 (n>=2)
1个回答
展开全部
1)
由an=2(Sn^2)/(2Sn-1) (n≥2),得
Sn-S(n-1)=2(Sn^2)/(2Sn-1) (n≥2),
得S(n-1)-Sn-2S(n-1)Sn=0
同时除以S(n-1)Sn得到
1/Sn-1/S(n-1)=2
所以数列{1/Sn}是等差数列,首项为1/S1=1/A1=1,公差为2.
2)n≥2时,a[n]=s[n]-s[n-1],
将它代入an= 2Sn^2/2Sn-1 ,并化简,得
1/s[n]=1/s[n-1]+2 (n≥2)
上式表明{1/s[n]}是以1/s[1]=1/a[1]=1 为首项,2为公差的等差数列
所以1/s[n]=2n-1,s[n]=1/(2n-1) (n≥1)
故n=1时,a[1]=1;
n≥2时,a[n]=s[n]-s[n-1]
=1/(2n-1)-1/(2n-3)
=-2/[(2n-1)(2n-3)]
由an=2(Sn^2)/(2Sn-1) (n≥2),得
Sn-S(n-1)=2(Sn^2)/(2Sn-1) (n≥2),
得S(n-1)-Sn-2S(n-1)Sn=0
同时除以S(n-1)Sn得到
1/Sn-1/S(n-1)=2
所以数列{1/Sn}是等差数列,首项为1/S1=1/A1=1,公差为2.
2)n≥2时,a[n]=s[n]-s[n-1],
将它代入an= 2Sn^2/2Sn-1 ,并化简,得
1/s[n]=1/s[n-1]+2 (n≥2)
上式表明{1/s[n]}是以1/s[1]=1/a[1]=1 为首项,2为公差的等差数列
所以1/s[n]=2n-1,s[n]=1/(2n-1) (n≥1)
故n=1时,a[1]=1;
n≥2时,a[n]=s[n]-s[n-1]
=1/(2n-1)-1/(2n-3)
=-2/[(2n-1)(2n-3)]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询