①已知cos(π/4-a)=3/5,sin(3π/4+b)=5/13,其中π/4<a<3π/4,0<b<π/4,求sin(a+b)的值
①已知cos(π/4-a)=3/5,sin(3π/4+b)=5/13,其中π/4<a<3π/4,0<b<π/4,求sin(a+b)的值②13sinα+5cosβ=9,13...
①已知cos(π/4-a)=3/5,sin(3π/4+b)=5/13,其中π/4<a<3π/4,0<b<π/4,求sin(a+b)的值
②13sinα+5cosβ=9,13cosα+5sinβ=15,求sin(α+β) 展开
②13sinα+5cosβ=9,13cosα+5sinβ=15,求sin(α+β) 展开
2个回答
展开全部
1.因为(3π/4+b)-(π/4-a)=b+a+π/2
所以cos[(a+b)+π/2]=cos(a+b)*cosπ/2-sin(a+b)*sinπ/2=-sin(a+b)
所以sin(a+b)=-cos[(a+b)+π/2]=-cos[(3π/4+b)-(π/4-a)]
=-[cos(3π/4+b)*cos(π/4-a)+sin(3π/4+b)*sin(π/4-a)]
由π/4<a<3π/4,0<b<π/4,得-π/2<π/4-a<0;3π/4<3π/4+b<π
又cos(π/4-a)=3/5, sin(3π/4+b)=5/13
所以sin(π/4-a)=-4/5, cos(3π/4+b)=-12/13
因此sin(a+b)=-cos[(a+b)+π/2]=-cos[(3π/4+b)-(π/4-a)]
=-[cos(3π/4+b)*cos(π/4-a)+sin(3π/4+b)*sin(π/4-a)]
=-[3/5*(-12/13)+5/13*(-4/5)]=36/65+20/65=56/65
2.将13sinα+5cosβ=9,13cosα+5sinβ=15两式分别平方得:
169sin^2α+130sinαcosβ+25cos^2β=81
169cos^2α+130cosαsinβ+25sin^2β=225
以上两式相加并整理得:
130(sinαcosβ+cosαsinβ=225+81-169-25
sin(α+β)=112/130=56/65
所以cos[(a+b)+π/2]=cos(a+b)*cosπ/2-sin(a+b)*sinπ/2=-sin(a+b)
所以sin(a+b)=-cos[(a+b)+π/2]=-cos[(3π/4+b)-(π/4-a)]
=-[cos(3π/4+b)*cos(π/4-a)+sin(3π/4+b)*sin(π/4-a)]
由π/4<a<3π/4,0<b<π/4,得-π/2<π/4-a<0;3π/4<3π/4+b<π
又cos(π/4-a)=3/5, sin(3π/4+b)=5/13
所以sin(π/4-a)=-4/5, cos(3π/4+b)=-12/13
因此sin(a+b)=-cos[(a+b)+π/2]=-cos[(3π/4+b)-(π/4-a)]
=-[cos(3π/4+b)*cos(π/4-a)+sin(3π/4+b)*sin(π/4-a)]
=-[3/5*(-12/13)+5/13*(-4/5)]=36/65+20/65=56/65
2.将13sinα+5cosβ=9,13cosα+5sinβ=15两式分别平方得:
169sin^2α+130sinαcosβ+25cos^2β=81
169cos^2α+130cosαsinβ+25sin^2β=225
以上两式相加并整理得:
130(sinαcosβ+cosαsinβ=225+81-169-25
sin(α+β)=112/130=56/65
2013-01-19
展开全部
- cos(π/4-a)=3/5,
可以求出sin(π/4-a)=±4/5
又π/4<a<3π/4, -π/2<π/4-a<0
∴sin(π/4-a)=-4/5
同理:
sin(3π/4+b)=5/13;
cos(3π/4+b)=-12/13
注意:a+b=[(3π/4+b)-(π/4-a)]-π/2
∴sin(a+b)=sin{[(3π/4+b)-(π/4-a)]-π/2}=-cos{[(3π/4+b)-(π/4-a)]=-cos(3π/4+b)cos(π/4-a)]-sin(3π/4+b)sin(π/4-a)]
=-(-12/13)*(3/5)-(5/13)(-4/5)=56/65
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询