展开全部
高次的方程,就是需要做因式分解,从而得到求解
-12x +8 = 3(x四次方)- 2(x立方)- 9(x平方) +4
3(x四次方)- 2(x立方)- 9x" + 12x -4 = 0
3(x四次方)- 2(x立方)-[ 9x" - 2*(3x)*2 +4 ] = 0
(x立方)(3x - 2) - (3x - 2)" = 0
(3x - 2)[(x立方)- (3x - 2)] = 0
(3x - 2)[(x立方)- x" + x" - 3x + 2 ] = 0
(3x - 2)[(x立方 - x")+ (x" - 3x + 2)] = 0
(3x - 2)[ x"(x - 1) + (x - 1)(x - 2)] = 0
(3x - 2)(x - 1)[ x" + x - 2 ] = 0
(3x - 2)(x - 1)"(x + 2) = 0
这个方程的解,就是
x1 = 2/3
x2 = x3 = 1
x4 = -2
-12x +8 = 3(x四次方)- 2(x立方)- 9(x平方) +4
3(x四次方)- 2(x立方)- 9x" + 12x -4 = 0
3(x四次方)- 2(x立方)-[ 9x" - 2*(3x)*2 +4 ] = 0
(x立方)(3x - 2) - (3x - 2)" = 0
(3x - 2)[(x立方)- (3x - 2)] = 0
(3x - 2)[(x立方)- x" + x" - 3x + 2 ] = 0
(3x - 2)[(x立方 - x")+ (x" - 3x + 2)] = 0
(3x - 2)[ x"(x - 1) + (x - 1)(x - 2)] = 0
(3x - 2)(x - 1)[ x" + x - 2 ] = 0
(3x - 2)(x - 1)"(x + 2) = 0
这个方程的解,就是
x1 = 2/3
x2 = x3 = 1
x4 = -2
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询