函数f(x)在[a,b]上有定义且|f(x)|在[a,b]上可积,此时f(x)在[a,b]上的定积分为什么不一定存在?

这是同济大学《高等数学》第六版第269页总习题五第1题第(4)个填空题但是没弄懂为什么。可积分一定能推出连续吗,f(x)在[a,b]上有界且有有限间断点则f(x)也是可积... 这是同济大学《高等数学》第六版 第269页 总习题五 第1题 第(4)个填空题
但是没弄懂为什么。

可积分一定能推出连续吗,f(x)在[a,b]上有界且有有限间断点则f(x)也是可积的 啊

下面是前人的答案

函数可积的条件是:若函数f(x)在[a,b]上连续,则f(x)在[a.b]上可积。
对于你的问题我举个反例你就知道了,
设f(x)=1(x≥0),-1(x<0)(一个分段函数形式)
此时f(x)不是连续函数,但是|f(x)|=1是连续函数
所以f(x)不一定可积。
展开
成都市侩
2010-08-07 · TA获得超过3012个赞
知道小有建树答主
回答量:824
采纳率:100%
帮助的人:333万
展开全部
可以肯定前面人举的反例是错误的!
这个问题的反例应该是有无限个间断点,如下面的函数:
在【a,b】上,
f(x)=1 (x为有理数时)
f(x)=-1(x为无理数时)
这个函数的绝对值是可积的,但是其本身并不可积!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式