用定积分求X=acos^3t,y=asin^3t 所 围成的平面图形的面积

∫ydx=4*∫asin^3t(acos^3t)'dt,t:π/2→0=-3*a^2∫sin^4t*cos^2tdt=-3a^2∫(sin^4t-sin^6t)dt=3/... ∫ydx=4*∫asin^3t(acos^3t)'dt,t:π/2→0
=-3*a^2∫sin^4t*cos^2tdt
=-3a^2∫(sin^4t-sin^6t)dt
=3/8*πa
网上答案是这样的,有没有人能把过程给的在详细点(本人会套公式但定积分运算不好)
展开
 我来答
Dilraba学长
高粉答主

2019-05-09 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411053

向TA提问 私信TA
展开全部

答案为3/8*πa^2。

解题过程如下:

x=acos^3t,y=asin^3t是星形线,它的面积为

∫ydx=4*∫asin^3t(acos^3t)'dt,t:π/2→0

=-3*a^2∫sin^4t*cos^2tdt

=-3a^2∫(sin^4t-sin^6t)dt

=3/8*πa^2

扩展资料

定理

一般定理

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

牛顿-莱布尼茨公式

定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。

北京埃德思远电气技术咨询有限公司
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
百度网友84a9c4faf
2013-11-26 · TA获得超过9470个赞
知道大有可为答主
回答量:6137
采纳率:20%
帮助的人:1984万
展开全部
首先由方程x=acos^3t,y=asin^3t可确定围成的平面图形为星形,且被x,y轴分成4等份,求出在第一象限的图形面积,再乘以4可得所示面积,计算参数 t 的范围为[0,π/2],得
∫ydx=4*∫asin^3td(acos^3t),t:π/2→0
=4*∫asin^3t(acos^3t)'dt,t:π/2→t0
=4*∫asin^3t(-3a*sint *cos^2t)dt,t:π/2→t0
=-3*a^2∫sin^4t*cos^2tdt
=-3*a^2∫sin^4t*(1-sin^2t)tdt
-3a^2∫(sin^4t-sin^6t)dt
=3/8*πa

P.S
这里,sin^4t = (sint)^4, sint 的四次方,其它的同样。
追问
从倒数第三行开始,我想问4哪儿去了啊,而且最后一步怎么得到答案的还不是很清楚
追答
哪个 4

=-3*a^2∫sin^4t*(1-sin^2t)tdt
=-3a^2∫(sin^4t-sin^6t)dt
=-3a^2(∫sin^4tdt-∫sin^6tdt)
=3/8*πa
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
blueet1
推荐于2018-03-08 · TA获得超过2429个赞
知道小有建树答主
回答量:1343
采纳率:0%
帮助的人:1231万
展开全部

本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式