数列an中,a1=1/2,前n项的和Sn=n²an,求an+1
1个回答
展开全部
s(n) = n^2a(n),
s(n+1) = (n+1)^2a(n+1),
a(n+1) = s(n+1)-s(n) = (n+1)^2a(n+1) - n^2a(n),
n(n+2)a(n+1) = n^2a(n),
(n+2)a(n+1) = na(n),
(n+2)(n+1)a(n+1) = (n+1)na(n),
{(n+1)na(n)}是首项为2a(1)=1,的常数数列。
(n+1)na(n) = 1,
a(n) = 1/[n(n+1)].
a(n+1) = 1/[(n+1)(n+2)].
s(n+1) = (n+1)^2a(n+1),
a(n+1) = s(n+1)-s(n) = (n+1)^2a(n+1) - n^2a(n),
n(n+2)a(n+1) = n^2a(n),
(n+2)a(n+1) = na(n),
(n+2)(n+1)a(n+1) = (n+1)na(n),
{(n+1)na(n)}是首项为2a(1)=1,的常数数列。
(n+1)na(n) = 1,
a(n) = 1/[n(n+1)].
a(n+1) = 1/[(n+1)(n+2)].
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询