如图,在平行四边形ABCD中,BC=2AB,CE⊥AB,E为垂足,F为AD的中点,若∠AEF=54°,则∠B=( )A.54
如图,在平行四边形ABCD中,BC=2AB,CE⊥AB,E为垂足,F为AD的中点,若∠AEF=54°,则∠B=()A.54°B.60°C.66°D.72°...
如图,在平行四边形ABCD中,BC=2AB,CE⊥AB,E为垂足,F为AD的中点,若∠AEF=54°,则∠B=( )A.54°B.60°C.66°D.72°
展开
1个回答
展开全部
解:延长EF与CD的延长线交于点G,连接CF,如图所示,
∵平行四边形ABCD,
∴CD∥AB,DC=AB,BC=AD,
∴∠AEF=∠G,
∵F为AD的中点,∴AF=DF,
又∠AFE=∠DFG,
∴△AEF≌△GDF(AAS),
∴FG=FE,∠G=∠AEF=54°,
∵CE⊥AB,CD∥AB,
∴EC⊥DC,即∠GCE=90°,
在Rt△CGE中,可得CF=GF=EF=
GE,
∴∠FCG=∠G=54°,
又BC=AD=2AB=2DC,F为AD中点,
∴CD=FD,
∴∠DCF=∠CFD=54°,
∴∠B=∠CDA=180°-54°-54°=72°.
故选D
∵平行四边形ABCD,
∴CD∥AB,DC=AB,BC=AD,
∴∠AEF=∠G,
∵F为AD的中点,∴AF=DF,
又∠AFE=∠DFG,
∴△AEF≌△GDF(AAS),
∴FG=FE,∠G=∠AEF=54°,
∵CE⊥AB,CD∥AB,
∴EC⊥DC,即∠GCE=90°,
在Rt△CGE中,可得CF=GF=EF=
1 |
2 |
∴∠FCG=∠G=54°,
又BC=AD=2AB=2DC,F为AD中点,
∴CD=FD,
∴∠DCF=∠CFD=54°,
∴∠B=∠CDA=180°-54°-54°=72°.
故选D
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询