设函数f(x)连续且恒大于零,F(t)=∫∫∫Ω(t)f(x2+y2+z2)dv∫∫D(t)f(x2+y2)dσ,G(x)=∫∫D(t)f(x
设函数f(x)连续且恒大于零,F(t)=∫∫∫Ω(t)f(x2+y2+z2)dv∫∫D(t)f(x2+y2)dσ,G(x)=∫∫D(t)f(x2+y2)dσ∫t?tf(x...
设函数f(x)连续且恒大于零,F(t)=∫∫∫Ω(t)f(x2+y2+z2)dv∫∫D(t)f(x2+y2)dσ,G(x)=∫∫D(t)f(x2+y2)dσ∫t?tf(x2)dx,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.(1)讨论F(t)在区间(0,+∞)内的单调性;(2)证明当t>0时,F(t)>2πG(t).
展开
1个回答
展开全部
(1)因为F(t)=
=
,
F′(t)=2
,
显然有:
t≥0,f(t2)>0;t-r≥0,f(r2)>0;
所以:
tf(t2)
f(r2)(t-r)dr≥0.
因此:
在(0,+∞)上F'(t)≥0,
故F(t) 在(0,+∞)内单调不减.
(2)因为:
G(t)=
,
要证明t>0时
F(t)>
G(t),只需证明t>0时,
F(t)?
G(t)>0,
即
f(r2)r2dr
f(r2)dr?[
f(r2)rdr]2>0.
令 g(t)=
f(r2)r2dr
| ||||||
|
2
| ||
|
F′(t)=2
tf(t2)
| ||
[
|
显然有:
t≥0,f(t2)>0;t-r≥0,f(r2)>0;
所以:
tf(t2)
∫ | t 0 |
因此:
在(0,+∞)上F'(t)≥0,
故F(t) 在(0,+∞)内单调不减.
(2)因为:
G(t)=
π
| ||
|
要证明t>0时
F(t)>
2 |
π |
F(t)?
2 |
π |
即
∫ | t 0 |
∫ | t 0 |
∫ | t 0 |
令 g(t)=
∫ | t 0 |
∫ | t
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|