(本小题满分12分)已知数列{an}的各项均为正数,Sn为其前n项和;且Sn =" 2" an -2(n∈N*);(1)求

(本小题满分12分)已知数列{an}的各项均为正数,Sn为其前n项和;且Sn="2"an-2(n∈N*);(1)求数列{an}的通项公式;(2)设数列{bn}的前n项和为... (本小题满分12分)已知数列{an}的各项均为正数,Sn为其前n项和;且Sn =" 2" an -2(n∈N*);(1)求数列{an}的通项公式;(2)设数列{bn}的前n项和为Tn,且bn= (n∈N*);求证:对于任意的正整 数n,总有Tn <2;(3)在正数数列{cn}中,设 (cn) n+1 = an+1(n∈N*);求数列{cn}中的最大项。 展开
 我来答
课趣电食3947
2014-12-20 · TA获得超过226个赞
知道答主
回答量:207
采纳率:0%
帮助的人:76.6万
展开全部
(1)因为Sn=2an-2(n∈N*),所以Sn-1=2an-1-2(n≥2,n∈N*)。
二式相减得:an="2" an-2an-1(n≥2,n∈N*),
因为an≠0,所以=2(n≥2,n∈N*),
即数列{ an}是等比数列,
又因为a1=S1,所以a1="2" a1-2,即a1=2,所以an=2n(n∈N*)(4分)
(2)证明:对于任意的正整数n,总有bn==,
所以当n≥2时,Tn=++……+≤1+++……+=1+1-+-+……+-=2-<2;
当n= 1时,T1=1<2仍成立;
所以,对于任意的正整数n,总有Tn <2。(8分)
(3)解:由(cn)n+1=an+1=n+1(n∈N*)
知:lncn=。令f(x)=,
则f′(x)=,因为在区间(0,e)上,f′(x)>0,在区间(e,+∞)上,f′(x)<0,
所以在区间(e,+∞)上f(x)为单调递减函数,所以n≥3且n∈N*时,{lncn}是递减数列,
又lnc1< lnc2  lnc3< lnc2,
所以,数列{lncn}中的最大项为lnc2=ln3,所以{cn}中的最大项为c2=。(12分)

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式