(2012?德州)如图,点A,E是半圆周上的三等分点,直径BC=2,AD⊥BC,垂足为D,连接BE交AD于F,过A作AG∥
(2012?德州)如图,点A,E是半圆周上的三等分点,直径BC=2,AD⊥BC,垂足为D,连接BE交AD于F,过A作AG∥BE交BC于G.(1)判断直线AG与⊙O的位置关...
(2012?德州)如图,点A,E是半圆周上的三等分点,直径BC=2,AD⊥BC,垂足为D,连接BE交AD于F,过A作AG∥BE交BC于G.(1)判断直线AG与⊙O的位置关系,并说明理由.(2)求线段AF的长.
展开
1个回答
展开全部
(1)直线AG与⊙O的位置关系是AG与⊙O相切,
理由是:连接OA,
∵点A,E是半圆周上的三等分点,
∴弧AB=弧AE=弧EC,
∴点A是弧BE的中点,
∴OA⊥BE,
又∵AG∥BE,
∴OA⊥AG,
∴AG与⊙O相切.
(2)∵点A,E是半圆周上的三等分点,
∴∠AOB=∠AOE=∠EOC=60°,
又∵OA=OB,
∴△ABO为正三角形,
又∵AD⊥OB,OB=1,
∴BD=OD=
,AD=
,
又∵∠EBC=
∠EOC=30°(圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半),
在Rt△FBD中,FD=BD?tan∠EBC=BD?tan30°=
×
=
,
∴AF=AD-DF=
-
=
理由是:连接OA,
∵点A,E是半圆周上的三等分点,
∴弧AB=弧AE=弧EC,
∴点A是弧BE的中点,
∴OA⊥BE,
又∵AG∥BE,
∴OA⊥AG,
∴AG与⊙O相切.
(2)∵点A,E是半圆周上的三等分点,
∴∠AOB=∠AOE=∠EOC=60°,
又∵OA=OB,
∴△ABO为正三角形,
又∵AD⊥OB,OB=1,
∴BD=OD=
1 |
2 |
| ||
2 |
又∵∠EBC=
1 |
2 |
在Rt△FBD中,FD=BD?tan∠EBC=BD?tan30°=
1 |
2 |
| ||
3 |
| ||
6 |
∴AF=AD-DF=
| ||
2 |
| ||
6 |
|