如图,已知抛物线l1:y=x2-4的图象与x轴相交于A、C两点,B是抛物线l1上的动点(B不与A、C重合),抛物线l
如图,已知抛物线l1:y=x2-4的图象与x轴相交于A、C两点,B是抛物线l1上的动点(B不与A、C重合),抛物线l2与l1关于x轴对称,以AC为对角线的平行四边形ABC...
如图,已知抛物线l1:y=x2-4的图象与x轴相交于A、C两点,B是抛物线l1上的动点(B不与A、C重合),抛物线l2与l1关于x轴对称,以AC为对角线的平行四边形ABCD的第四个顶点为D.(1)求l2的解析式;(2)求证:点D一定在l2上;(3)?ABCD能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由.注:计算结果不取近似值.
展开
1个回答
展开全部
(1)设l2的解析式为y=ax2+bx+c(a≠0),
∵l1与x轴的交点为A(-2,0),C(2,0),顶点坐标是(0,-4),l2与l1关于x轴对称,
∴l2过A(-2,0),C(2,0),顶点坐标是(0,4),(1分)
∴
(2分)
∴a=-1,b=0,c=4,
即l2的解析式为y=-x2+4.(3分)
(还可利用顶点式、对称性关系等方法解答)
(2)设点B(m,n)为l1:y=x2-4上任意一点,则n=m2-4,(*)
∵四边形ABCD′是平行四边形,点A、C关于原点O对称,
∴B、D′关于原点O对称,(4分)
∴点D′的坐标为D′(-m,-n).
由式方程式可知,-n=-(m2-4)=-(-m)2+4,
即点D′的坐标满足y=-x2+4,又D与D′关于y轴对称,
∴点D在l2上.(5分)
(3)?ABCD能为矩形.(6分)
过点B作BH⊥x轴于H,由点B在l1:y=x2-4上,可设点B的坐标为(x0,x02-4),
则OH=|x0|,BH=|x02-4|.
易知,当且仅当BO=AO=2时,?ABCD为矩形.
在Rt△OBH中,由勾股定理得,|x0|2+|x02-4|2=22,
(x02-4)(x02-3)=0,
∴x0=±2(舍去)、x0=±
.(7分)
所以,当点B坐标为B(
,-1)或B′(-
,-1)时,?ABCD为矩形,
此时,点D的坐标分别是D(-
,1)、D′(
∵l1与x轴的交点为A(-2,0),C(2,0),顶点坐标是(0,-4),l2与l1关于x轴对称,
∴l2过A(-2,0),C(2,0),顶点坐标是(0,4),(1分)
∴
|
∴a=-1,b=0,c=4,
即l2的解析式为y=-x2+4.(3分)
(还可利用顶点式、对称性关系等方法解答)
(2)设点B(m,n)为l1:y=x2-4上任意一点,则n=m2-4,(*)
∵四边形ABCD′是平行四边形,点A、C关于原点O对称,
∴B、D′关于原点O对称,(4分)
∴点D′的坐标为D′(-m,-n).
由式方程式可知,-n=-(m2-4)=-(-m)2+4,
即点D′的坐标满足y=-x2+4,又D与D′关于y轴对称,
∴点D在l2上.(5分)
(3)?ABCD能为矩形.(6分)
过点B作BH⊥x轴于H,由点B在l1:y=x2-4上,可设点B的坐标为(x0,x02-4),
则OH=|x0|,BH=|x02-4|.
易知,当且仅当BO=AO=2时,?ABCD为矩形.
在Rt△OBH中,由勾股定理得,|x0|2+|x02-4|2=22,
(x02-4)(x02-3)=0,
∴x0=±2(舍去)、x0=±
3 |
所以,当点B坐标为B(
3 |
3 |
此时,点D的坐标分别是D(-
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|