如图,在四边形ABCD中,AC平分∠BAD,过C作CE⊥AB于E,并且AE=12(AB+AD),求∠ABC+∠ADC的度数

如图,在四边形ABCD中,AC平分∠BAD,过C作CE⊥AB于E,并且AE=12(AB+AD),求∠ABC+∠ADC的度数.... 如图,在四边形ABCD中,AC平分∠BAD,过C作CE⊥AB于E,并且AE=12(AB+AD),求∠ABC+∠ADC的度数. 展开
 我来答
唯我销魂丶乂
推荐于2016-10-16 · TA获得超过197个赞
知道答主
回答量:112
采纳率:100%
帮助的人:117万
展开全部
解答:解:过C作CF垂直AD于F,
∵AC平分∠BAD,
∴∠FAC=∠EAC,
∵CE⊥AB,CF⊥AD,
∴∠DFC=∠CEA=90°,
∴△AFC≌△AEC(AAS),
∴AF=AE,CF=CE,
AE=
1
2
(AB+AD)

∴2AE=AB+AD,
又∵AD=AF-DF,AB=AE+BE,AF=AE,
∴2AE=AE+BE+AE-DF,
∴BE=DF,
∵∠DFC=∠CEB=90°,CF=CE,
∴△CDF≌△CEB(SAS),
∴∠ABC=∠CDF,
∵∠ADC+∠CDF=180°,
∴∠ABC+∠ADC=180°.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式