如图,在三棱柱ABC-A1B1C1中,∠BAC=90°,AA1⊥平面A1B1C1,AB=AC=AA1.(Ⅰ)证明:AB1⊥平面A1BC1;(
如图,在三棱柱ABC-A1B1C1中,∠BAC=90°,AA1⊥平面A1B1C1,AB=AC=AA1.(Ⅰ)证明:AB1⊥平面A1BC1;(Ⅱ)若点D为B1C1的中点,求...
如图,在三棱柱ABC-A1B1C1中,∠BAC=90°,AA1⊥平面A1B1C1,AB=AC=AA1.(Ⅰ)证明:AB1⊥平面A1BC1;(Ⅱ)若点D为B1C1的中点,求AD与平面A1BC1所成角的大小.
展开
1个回答
展开全部
解答:(Ⅰ)证明:∵AA1⊥平面A1B1C1,∴AA1⊥A1C1.
又 A1C1⊥A1B1,AA1∩A1B1=A1
∴A1C1⊥平面AA1B1B.
∴A1C1⊥AB1
又四边形AA1B1B是正方形,AB1⊥A1B,A1B∩A1C1=A1
∴AB1⊥平面A1BC1.
(Ⅱ)设AB1∩BA1=O,连结AC1,
∵AB=AC=AA1=a,A1C1⊥A1B1,AA1⊥平面A1B1C1,
∴△AB1C1是正三角形,
∵AD,C1O是△AB1C1的中线,
∴AD,C1O的交点G为△AB1C1的重心,
∴∠AGO是AD与平面A1BC1所成角,
在Rt△AOG中,AG=
AD=
AB,AO=
AB,
∴sin∠AGO=
,∴∠AGO=60°,即AD与平面A1BC1所成角为60°.
又 A1C1⊥A1B1,AA1∩A1B1=A1
∴A1C1⊥平面AA1B1B.
∴A1C1⊥AB1
又四边形AA1B1B是正方形,AB1⊥A1B,A1B∩A1C1=A1
∴AB1⊥平面A1BC1.
(Ⅱ)设AB1∩BA1=O,连结AC1,
∵AB=AC=AA1=a,A1C1⊥A1B1,AA1⊥平面A1B1C1,
∴△AB1C1是正三角形,
∵AD,C1O是△AB1C1的中线,
∴AD,C1O的交点G为△AB1C1的重心,
∴∠AGO是AD与平面A1BC1所成角,
在Rt△AOG中,AG=
2 |
3 |
| ||
3 |
| ||
2 |
∴sin∠AGO=
| ||
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询