matlab 非线性 参数 方程组 的解法?

2*s*w=(m*(Lf^2*Kf+Lr^2*Kr)+I*(Kf+Kr))/(m*I*V)w^2=(Kf*Kr*L^2)/(m*I*V^2)+(Lr*Kr-Lf*Kf)/... 2*s*w=(m*(Lf^2*Kf+Lr^2*Kr)+I*(Kf+Kr))/(m*I*V)
w^2=(Kf*Kr*L^2)/(m*I*V^2)+(Lr*Kr-Lf*Kf)/I
这是我需要求解的两个等式,所有字母均是各类参数,我想确定他们之间的关系也就是将某个参数用其余的参数表示,例如:w=f(V,m,I,Lf,Lr,Kr,Kf)求出f()是什么,还请高手赐教
展开
dbb627
2010-08-09 · TA获得超过1.2万个赞
知道大有可为答主
回答量:2127
采纳率:88%
帮助的人:1387万
展开全部
>>m= solve('2*s*w=(m*(Lf^2*Kf+Lr^2*Kr)+I*(Kf+Kr))/(m*I*V)','m')

m =

I*(Kf+Kr)/(2*s*w*I*V-Lf^2*Kf-Lr^2*Kr)

>> [m I]=solve('2*s*w=(m*(Lf^2*Kf+Lr^2*Kr)+I*(Kf+Kr))/(m*I*V)','w^2=(Kf*Kr*L^2)/(m*I*V^2)+(Lr*Kr-Lf*Kf)/I','m','I')

m =

[ 2*(Kf*Kr*L^2+1/2/(2*V*s*w*Lr*Kr-2*V*s*w*Lf*Kf-Lf^2*Kf*w^2-Lr^2*Kr*w^2)*(Kf*V*Lr*Kr-V*Lf*Kf^2+V*Lr*Kr^2-Kr*V*Lf*Kf-2*s*w*Kf*Kr*L^2+(-4*Kr^2*V*Lf*Kf^2*s*w*L^2+4*s^2*w^2*Kf^2*Kr^2*L^4-2*Kf^3*V^2*Lr*Kr*Lf-4*Kf^2*V^2*Lr*Kr^2*Lf+4*Kf^2*V*Lr*Kr^2*s*w*L^2-4*V*Lf*Kf^3*s*w*Kr*L^2-2*V^2*Lr*Kr^3*Lf*Kf+4*V*Lr*Kr^3*s*w*Kf*L^2+Kf^2*V^2*Lr^2*Kr^2+2*Kf*V^2*Lr^2*Kr^3+2*V^2*Lf^2*Kf^3*Kr+Kr^2*V^2*Lf^2*Kf^2+V^2*Lf^2*Kf^4+V^2*Lr^2*Kr^4-4*Lf^2*Kf^2*w^2*Kr^2*L^2-4*Lf^2*Kf^3*w^2*Kr*L^2-4*Lr^2*Kr^3*w^2*Kf*L^2-4*Lr^2*Kr^2*w^2*Kf^2*L^2)^(1/2))*V*Lr*Kr-1/2/(2*V*s*w*Lr*Kr-2*V*s*w*Lf*Kf-Lf^2*Kf*w^2-Lr^2*Kr*w^2)*(Kf*V*Lr*Kr-V*Lf*Kf^2+V*Lr*Kr^2-Kr*V*Lf*Kf-2*s*w*Kf*Kr*L^2+(-4*Kr^2*V*Lf*Kf^2*s*w*L^2+4*s^2*w^2*Kf^2*Kr^2*L^4-2*Kf^3*V^2*Lr*Kr*Lf-4*Kf^2*V^2*Lr*Kr^2*Lf+4*Kf^2*V*Lr*Kr^2*s*w*L^2-4*V*Lf*Kf^3*s*w*Kr*L^2-2*V^2*Lr*Kr^3*Lf*Kf+4*V*Lr*Kr^3*s*w*Kf*L^2+Kf^2*V^2*Lr^2*Kr^2+2*Kf*V^2*Lr^2*Kr^3+2*V^2*Lf^2*Kf^3*Kr+Kr^2*V^2*Lf^2*Kf^2+V^2*Lf^2*Kf^4+V^2*Lr^2*Kr^4-4*Lf^2*Kf^2*w^2*Kr^2*L^2-4*Lf^2*Kf^3*w^2*Kr*L^2-4*Lr^2*Kr^3*w^2*Kf*L^2-4*Lr^2*Kr^2*w^2*Kf^2*L^2)^(1/2))*V*Lf*Kf)/w^2*(2*V*s*w*Lr*Kr-2*V*s*w*Lf*Kf-Lf^2*Kf*w^2-Lr^2*Kr*w^2)/(Kf*V*Lr*Kr-V*Lf*Kf^2+V*Lr*Kr^2-Kr*V*Lf*Kf-2*s*w*Kf*Kr*L^2+(-4*Kr^2*V*Lf*Kf^2*s*w*L^2+4*s^2*w^2*Kf^2*Kr^2*L^4-2*Kf^3*V^2*Lr*Kr*Lf-4*Kf^2*V^2*Lr*Kr^2*Lf+4*Kf^2*V*Lr*Kr^2*s*w*L^2-4*V*Lf*Kf^3*s*w*Kr*L^2-2*V^2*Lr*Kr^3*Lf*Kf+4*V*Lr*Kr^3*s*w*Kf*L^2+Kf^2*V^2*Lr^2*Kr^2+2*Kf*V^2*Lr^2*Kr^3+2*V^2*Lf^2*Kf^3*Kr+Kr^2*V^2*Lf^2*Kf^2+V^2*Lf^2*Kf^4+V^2*Lr^2*Kr^4-4*Lf^2*Kf^2*w^2*Kr^2*L^2-4*Lf^2*Kf^3*w^2*Kr*L^2-4*Lr^2*Kr^3*w^2*Kf*L^2-4*Lr^2*Kr^2*w^2*Kf^2*L^2)^(1/2))/V]
[ 2*(Kf*Kr*L^2+1/2/(2*V*s*w*Lr*Kr-2*V*s*w*Lf*Kf-Lf^2*Kf*w^2-Lr^2*Kr*w^2)*(Kf*V*Lr*Kr-V*Lf*Kf^2+V*Lr*Kr^2-Kr*V*Lf*Kf-2*s*w*Kf*Kr*L^2-(-4*Kr^2*V*Lf*Kf^2*s*w*L^2+4*s^2*w^2*Kf^2*Kr^2*L^4-2*Kf^3*V^2*Lr*Kr*Lf-4*Kf^2*V^2*Lr*Kr^2*Lf+4*Kf^2*V*Lr*Kr^2*s*w*L^2-4*V*Lf*Kf^3*s*w*Kr*L^2-2*V^2*Lr*Kr^3*Lf*Kf+4*V*Lr*Kr^3*s*w*Kf*L^2+Kf^2*V^2*Lr^2*Kr^2+2*Kf*V^2*Lr^2*Kr^3+2*V^2*Lf^2*Kf^3*Kr+Kr^2*V^2*Lf^2*Kf^2+V^2*Lf^2*Kf^4+V^2*Lr^2*Kr^4-4*Lf^2*Kf^2*w^2*Kr^2*L^2-4*Lf^2*Kf^3*w^2*Kr*L^2-4*Lr^2*Kr^3*w^2*Kf*L^2-4*Lr^2*Kr^2*w^2*Kf^2*L^2)^(1/2))*V*Lr*Kr-1/2/(2*V*s*w*Lr*Kr-2*V*s*w*Lf*Kf-Lf^2*Kf*w^2-Lr^2*Kr*w^2)*(Kf*V*Lr*Kr-V*Lf*Kf^2+V*Lr*Kr^2-Kr*V*Lf*Kf-2*s*w*Kf*Kr*L^2-(-4*Kr^2*V*Lf*Kf^2*s*w*L^2+4*s^2*w^2*Kf^2*Kr^2*L^4-2*Kf^3*V^2*Lr*Kr*Lf-4*Kf^2*V^2*Lr*Kr^2*Lf+4*Kf^2*V*Lr*Kr^2*s*w*L^2-4*V*Lf*Kf^3*s*w*Kr*L^2-2*V^2*Lr*Kr^3*Lf*Kf+4*V*Lr*Kr^3*s*w*Kf*L^2+Kf^2*V^2*Lr^2*Kr^2+2*Kf*V^2*Lr^2*Kr^3+2*V^2*Lf^2*Kf^3*Kr+Kr^2*V^2*Lf^2*Kf^2+V^2*Lf^2*Kf^4+V^2*Lr^2*Kr^4-4*Lf^2*Kf^2*w^2*Kr^2*L^2-4*Lf^2*Kf^3*w^2*Kr*L^2-4*Lr^2*Kr^3*w^2*Kf*L^2-4*Lr^2*Kr^2*w^2*Kf^2*L^2)^(1/2))*V*Lf*Kf)/w^2*(2*V*s*w*Lr*Kr-2*V*s*w*Lf*Kf-Lf^2*Kf*w^2-Lr^2*Kr*w^2)/(Kf*V*Lr*Kr-V*Lf*Kf^2+V*Lr*Kr^2-Kr*V*Lf*Kf-2*s*w*Kf*Kr*L^2-(-4*Kr^2*V*Lf*Kf^2*s*w*L^2+4*s^2*w^2*Kf^2*Kr^2*L^4-2*Kf^3*V^2*Lr*Kr*Lf-4*Kf^2*V^2*Lr*Kr^2*Lf+4*Kf^2*V*Lr*Kr^2*s*w*L^2-4*V*Lf*Kf^3*s*w*Kr*L^2-2*V^2*Lr*Kr^3*Lf*Kf+4*V*Lr*Kr^3*s*w*Kf*L^2+Kf^2*V^2*Lr^2*Kr^2+2*Kf*V^2*Lr^2*Kr^3+2*V^2*Lf^2*Kf^3*Kr+Kr^2*V^2*Lf^2*Kf^2+V^2*Lf^2*Kf^4+V^2*Lr^2*Kr^4-4*Lf^2*Kf^2*w^2*Kr^2*L^2-4*Lf^2*Kf^3*w^2*Kr*L^2-4*Lr^2*Kr^3*w^2*Kf*L^2-4*Lr^2*Kr^2*w^2*Kf^2*L^2)^(1/2))/V]

I =

[ 1/2/(2*V*s*w*Lr*Kr-2*V*s*w*Lf*Kf-Lf^2*Kf*w^2-Lr^2*Kr*w^2)*(Kf*V*Lr*Kr-V*Lf*Kf^2+V*Lr*Kr^2-Kr*V*Lf*Kf-2*s*w*Kf*Kr*L^2+(-4*Kr^2*V*Lf*Kf^2*s*w*L^2+4*s^2*w^2*Kf^2*Kr^2*L^4-2*Kf^3*V^2*Lr*Kr*Lf-4*Kf^2*V^2*Lr*Kr^2*Lf+4*Kf^2*V*Lr*Kr^2*s*w*L^2-4*V*Lf*Kf^3*s*w*Kr*L^2-2*V^2*Lr*Kr^3*Lf*Kf+4*V*Lr*Kr^3*s*w*Kf*L^2+Kf^2*V^2*Lr^2*Kr^2+2*Kf*V^2*Lr^2*Kr^3+2*V^2*Lf^2*Kf^3*Kr+Kr^2*V^2*Lf^2*Kf^2+V^2*Lf^2*Kf^4+V^2*Lr^2*Kr^4-4*Lf^2*Kf^2*w^2*Kr^2*L^2-4*Lf^2*Kf^3*w^2*Kr*L^2-4*Lr^2*Kr^3*w^2*Kf*L^2-4*Lr^2*Kr^2*w^2*Kf^2*L^2)^(1/2))/V]
[ 1/2/(2*V*s*w*Lr*Kr-2*V*s*w*Lf*Kf-Lf^2*Kf*w^2-Lr^2*Kr*w^2)*(Kf*V*Lr*Kr-V*Lf*Kf^2+V*Lr*Kr^2-Kr*V*Lf*Kf-2*s*w*Kf*Kr*L^2-(-4*Kr^2*V*Lf*Kf^2*s*w*L^2+4*s^2*w^2*Kf^2*Kr^2*L^4-2*Kf^3*V^2*Lr*Kr*Lf-4*Kf^2*V^2*Lr*Kr^2*Lf+4*Kf^2*V*Lr*Kr^2*s*w*L^2-4*V*Lf*Kf^3*s*w*Kr*L^2-2*V^2*Lr*Kr^3*Lf*Kf+4*V*Lr*Kr^3*s*w*Kf*L^2+Kf^2*V^2*Lr^2*Kr^2+2*Kf*V^2*Lr^2*Kr^3+2*V^2*Lf^2*Kf^3*Kr+Kr^2*V^2*Lf^2*Kf^2+V^2*Lf^2*Kf^4+V^2*Lr^2*Kr^4-4*Lf^2*Kf^2*w^2*Kr^2*L^2-4*Lf^2*Kf^3*w^2*Kr*L^2-4*Lr^2*Kr^3*w^2*Kf*L^2-4*Lr^2*Kr^2*w^2*Kf^2*L^2)^(1/2))/V]

>>
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式