答对一题加十分,答错一题扣六分。 选手共抢答16题,最后得16分。他答对了几题?
他答对了7题。解法如下:
设他答对了X题,则依题意可以得:10x-6(16-x)=16
可得:10x-16*6+6x=16
可得:16x=16*7
得出:x=7
10x-6(16-x)=16是一个一元一次方程。一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。一元一次方程只有一个根。
一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。
扩展资料
一元一次方程最早见于约公元前1600年的古埃及时期。
公元前1世纪左右,中国人在《九章算术》中首次加入了负数,并提出了正负数的运算法则,解决了移项问题。在“盈不足”一章中提出了盈不足术。但该方法并没有被用来解决一元一次方程。在11~13世纪时传入阿拉伯地区,并被称为“契丹算法”。
9世纪,阿拉伯数学家花拉子米在《对消与还原》中给出了解方程的简单可行的基本方法,即“还原”和“对消”。但没有采用字母符号。体现了明显的方程的思想。
12世纪,印度数学家婆什迦罗在《丽拉沃蒂》一书中用假设法(设未知数)来解决一类一元一次方程。由于所假设的数可以是任意正数,婆什迦罗称上述方法为“任意数算法”。
13世纪,中国的盈不足术传入欧洲,意大利数学家斐波那契在《计算之书》中利用单假设和双假设法来解一元一次方程。
16世纪时,韦达创立符号代数之后,提出了方程的移项与同除命题,也创立了这一概念,被尊称为“现代数学之父”。但是韦达没有接受负数。
16世纪时,明代数学家程大位(1533-1606)在《算法统宗》一书中也用假设法来解一元一次方程。
1859年,中国数学家李善兰正式将这类等式译为一元一次方程。
解,假设全部答对,应该得到
16×10=160分
比实际多
160-16=144分
答对1题比答错1题多得到
10+6=16分
答错了
144÷16=9题
答对了
16-9=7题