已知f(x)=x^3+ax^2+bx+c在x=1与x=-2时,都取得极值.
已知f(x)=x^3+ax^2+bx+c在x=1与x=-2时,都取得极值.(1)求a,b的值.(2)若x属于[-3,2]时.有极小值0,求c的值...
已知f(x)=x^3+ax^2+bx+c在x=1与x=-2时,都取得极值.
(1) 求a,b的值.
(2) 若x属于[-3,2]时. 有极小值0,求c的值 展开
(1) 求a,b的值.
(2) 若x属于[-3,2]时. 有极小值0,求c的值 展开
2个回答
2010-08-09
展开全部
f'(x)=3x^2+2ax+b=0的解为1,-2
代入得:
3+2a+b=0
12-4a+b=0
=>a=1.5,b=-6
=>f(x)=x^3+1.5x^2-6x+c
f(1)=1+1.5-6+c=c-3.5
f(-2)=-8+6+12+c=c+10
故min f(x)=f(1)=c-3.5,x∈[-3,2]
即c-3.5=0
c=3.5
代入得:
3+2a+b=0
12-4a+b=0
=>a=1.5,b=-6
=>f(x)=x^3+1.5x^2-6x+c
f(1)=1+1.5-6+c=c-3.5
f(-2)=-8+6+12+c=c+10
故min f(x)=f(1)=c-3.5,x∈[-3,2]
即c-3.5=0
c=3.5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询