1个回答
展开全部
解:∵a/(b+c)=(a+b)/2(b+c)+(a+c)/2(b+c)-1/2
b/(a+c)=(a+b)/2(a+c)+(b+c)/2(a+c)-1/2
c/(a+b)=(c+a)/2(a+b)+(b+c)/2(a+b)-1/2
三个式子相加:
a/(b+c)+b/(a+c)+c/(a+b)=[(a+b)/2(b+c)+(b+c)/2(a+b)]+[(a+c)/2(b+c)+(b+c)/2(a+c)]+[(a+b)/2(a+c)+(a+c)/2(a+b)]-3/2
>=2*1/2+2*1/2+2*1/2-3/2
=3/2
即:a/(b+c)+b/(c+a)+c/(a+b) >=3/2
b/(a+c)=(a+b)/2(a+c)+(b+c)/2(a+c)-1/2
c/(a+b)=(c+a)/2(a+b)+(b+c)/2(a+b)-1/2
三个式子相加:
a/(b+c)+b/(a+c)+c/(a+b)=[(a+b)/2(b+c)+(b+c)/2(a+b)]+[(a+c)/2(b+c)+(b+c)/2(a+c)]+[(a+b)/2(a+c)+(a+c)/2(a+b)]-3/2
>=2*1/2+2*1/2+2*1/2-3/2
=3/2
即:a/(b+c)+b/(c+a)+c/(a+b) >=3/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询