1个回答
展开全部
把n=k+1带入原来式子的左边的部分,表示n取到k+1为止,而右边是你要证明的式子。
比如:证明等差数列前n项和:1+2+……+n=(n+1)n/2
当n=1,1=(1+1)*1/2 等式成立
假设n=k成立,即1+2+……+k=(k+1)k/2 【这边的k可以指大于等于1的任何整数,注意这一步在没证明n=k+1成立时,还不能说成立,只是假设】
在假设n=k成立的基础上我们要证明n=k+1是成立的,即要证明1+2+……+k+(k+1)=((k+1)+1)(k+1)/2也成立,不妨令这个式子叫【待证式】。这边((k+1)+1)(k+1)/2就是用(k+1)代替(k+1)k/2中k的结果。
而:【1+2+……+k】+(k+1)=【(k+1)k/2】+(k+1)=(k+1)k/2+2(k+1)/2=((k+1)(k+2))/2=(k+1)((k+1)+1)/2=((k+1)+1)(k+1)/2 到这里我们已经证明了【待证式】是成立的。
这样原结论就成立了。为什么这么说,刚才说了,假设n=k时,k可以指大于等于1的任何的整数,因为k=1成立,可以推出k=k+1=2成立,继续下去k=k+1=3也成立,……
不知道讲清楚了没有!
比如:证明等差数列前n项和:1+2+……+n=(n+1)n/2
当n=1,1=(1+1)*1/2 等式成立
假设n=k成立,即1+2+……+k=(k+1)k/2 【这边的k可以指大于等于1的任何整数,注意这一步在没证明n=k+1成立时,还不能说成立,只是假设】
在假设n=k成立的基础上我们要证明n=k+1是成立的,即要证明1+2+……+k+(k+1)=((k+1)+1)(k+1)/2也成立,不妨令这个式子叫【待证式】。这边((k+1)+1)(k+1)/2就是用(k+1)代替(k+1)k/2中k的结果。
而:【1+2+……+k】+(k+1)=【(k+1)k/2】+(k+1)=(k+1)k/2+2(k+1)/2=((k+1)(k+2))/2=(k+1)((k+1)+1)/2=((k+1)+1)(k+1)/2 到这里我们已经证明了【待证式】是成立的。
这样原结论就成立了。为什么这么说,刚才说了,假设n=k时,k可以指大于等于1的任何的整数,因为k=1成立,可以推出k=k+1=2成立,继续下去k=k+1=3也成立,……
不知道讲清楚了没有!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |