数学归纳法

用数学归纳法证明:1+3+9+…+3^(n-1)=1/2(3^n-1)... 用数学归纳法证明:1+3+9+…+3^(n-1)=1/2(3^n-1) 展开
xuzhouliuying
高粉答主

2011-03-01 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.5亿
展开全部
证:
n=1时,左=3^0=1,右=(3^1-1)/2=(3-1)/2=1,左=右,等式成立。
假设当n=k(k∈N,且k≥1)时,等式成立,即
1+3+9+...+3^(k-1)=(3^k-1)/2
则当n=k+1时
1+3+9+...+3^k
=1+3+9+...+3^(k-1)+3^k
=(3^k-1)/2+3^k
=(3^k-1+2×3^k)/2
=(3×3^k-1)/2
=[3^(k+1)-1]/2
等式同样成立。
因此1+3+9+…+3^(n-1)=1/2(3^n-1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式