在△ABC中,sin*sinA+sin*sinB=sin*sinC。求证:△ABC是直角三角形。

要快啊... 要快啊 展开
百度网友febf5752c
2010-08-09 · TA获得超过454个赞
知道答主
回答量:74
采纳率:0%
帮助的人:61.9万
展开全部
用正玄定理,任意三角形ABC,都有 a/sinA=b/sinB=c/sinC=2R (R为三角形外接圆半径)
即sinA=a/2R
sinB=b/2R
sinC=c/2R
再因为sinA*sinA+sinB*sinB=sinC*sinC
所以(a/2R)^2+(b/2R)^2=(c/2R)^2
化简a^2+b^2=c^2
根据勾股定理
所以角C为直角啦
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式