高一数列大题
已知数列{an}前几项和Sn=n^2:设bn=(1/3)^n*an,数列{bn}的前n项和为Tn(1)求数列{an}的通项公式(2)证明:Tn<1...
已知数列{an}前几项和Sn=n^2:设bn=(1/3)^n*an,数列{bn}的前n项和为Tn
(1)求数列{an}的通项公式
(2)证明:Tn<1 展开
(1)求数列{an}的通项公式
(2)证明:Tn<1 展开
展开全部
(1)解:
当n=1时,a1=S1=1^2=1;
当n>1时,Sn=n^2,S(n-1)=(n-1)^2=n^2-2n+1
则an=Sn-S(n-1)=n^2-(n^2-2n+1)=2n-1.
因为a1=1=2*1-1,符合上式,所以求数列{an}的通项公式是an=2n-1.
(2)证明:bn=(1/3)^n*an=(2n-1)*(1/3)^n
则 Tn=1/3+3*(1/3)^2+5*(1/3)^3+…+(2n-1)*(1/3)^n
(1/3)Tn= (1/3)^2+3*(1/3)^3+…+(2n-3)*(1/3)^n+(2n-1)*(1/3)^(n+1)
两式相减得:
(2/3)Tn=1/3+2*(1/3)^2+2*(1/3)^3+…+2*(1/3)^n-(2n-1)*(1/3)^(n+1)
=1/3+2*(1/9)*[1-(1/3)^(n-1)]/(1-1/3)-(2n-1)*(1/3)^(n+1)
=1/3+(1/3)*[1-(1/3)^(n-1)]-(2n-1)*(1/3)^(n+1)
=2/3-(1/3)^n-(2n-1)*(1/3)^(n+1)
所以Tn=1-(3/2)*[(1/3)^n+(2n-1)*(1/3)^(n+1)]<1.
当n=1时,a1=S1=1^2=1;
当n>1时,Sn=n^2,S(n-1)=(n-1)^2=n^2-2n+1
则an=Sn-S(n-1)=n^2-(n^2-2n+1)=2n-1.
因为a1=1=2*1-1,符合上式,所以求数列{an}的通项公式是an=2n-1.
(2)证明:bn=(1/3)^n*an=(2n-1)*(1/3)^n
则 Tn=1/3+3*(1/3)^2+5*(1/3)^3+…+(2n-1)*(1/3)^n
(1/3)Tn= (1/3)^2+3*(1/3)^3+…+(2n-3)*(1/3)^n+(2n-1)*(1/3)^(n+1)
两式相减得:
(2/3)Tn=1/3+2*(1/3)^2+2*(1/3)^3+…+2*(1/3)^n-(2n-1)*(1/3)^(n+1)
=1/3+2*(1/9)*[1-(1/3)^(n-1)]/(1-1/3)-(2n-1)*(1/3)^(n+1)
=1/3+(1/3)*[1-(1/3)^(n-1)]-(2n-1)*(1/3)^(n+1)
=2/3-(1/3)^n-(2n-1)*(1/3)^(n+1)
所以Tn=1-(3/2)*[(1/3)^n+(2n-1)*(1/3)^(n+1)]<1.
展开全部
1.首先n=1时 a1=s1=1^2=1
n>1时,an=sn-s(n-1)=n^2-(n-1)^2=n^2-n^2+2n-1=2n-1
将1代入,发现成立
{an}的通项公式为an=2n-1
2.bn=1/3)^n*(2n-1)
Tn=1/3*1+(1/3)^2*3+(1/3)^3*5+.....+(1/3)^n*(2n-1)
1/3Tn= (1/3)^2*1+(1/3)^3*3+.....+(1/3)^n*(2n-3)+(1/3)^(n+1)*(2n-1)
相减,2/3Tn=1/3*1+2*[(1/3)^2+(1/3)^3+.....(1/3)^n]-(1/3)^(n+1)*(2n-1)
(1/3)^2+(1/3)^3+.....(1/3)^n=[(1/3)^2-(1/3)^n*(1/3)]/(1-1/3)
=[(1/3)^2-(1/3)^(n+1)]/(2/3)
=[(1/3)^2-(1/3)^(n+1)]*(3/2)
2*[(1/3)^2+(1/3)^3+.....(1/3)^n]=2*[(1/3)^2-(1/3)^(n+1)]*(3/2)
=(1/3)^1-(1/3)^n<1/3
2/3Tn=1/3*1+2*[(1/3)^2+(1/3)^3+.....(1/3)^n]-(1/3)^(n+1)*(2n-1)
又因为-(1/3)^(n+1)*(2n-1)<0
2/3Tn<2/3
Tn<1
n>1时,an=sn-s(n-1)=n^2-(n-1)^2=n^2-n^2+2n-1=2n-1
将1代入,发现成立
{an}的通项公式为an=2n-1
2.bn=1/3)^n*(2n-1)
Tn=1/3*1+(1/3)^2*3+(1/3)^3*5+.....+(1/3)^n*(2n-1)
1/3Tn= (1/3)^2*1+(1/3)^3*3+.....+(1/3)^n*(2n-3)+(1/3)^(n+1)*(2n-1)
相减,2/3Tn=1/3*1+2*[(1/3)^2+(1/3)^3+.....(1/3)^n]-(1/3)^(n+1)*(2n-1)
(1/3)^2+(1/3)^3+.....(1/3)^n=[(1/3)^2-(1/3)^n*(1/3)]/(1-1/3)
=[(1/3)^2-(1/3)^(n+1)]/(2/3)
=[(1/3)^2-(1/3)^(n+1)]*(3/2)
2*[(1/3)^2+(1/3)^3+.....(1/3)^n]=2*[(1/3)^2-(1/3)^(n+1)]*(3/2)
=(1/3)^1-(1/3)^n<1/3
2/3Tn=1/3*1+2*[(1/3)^2+(1/3)^3+.....(1/3)^n]-(1/3)^(n+1)*(2n-1)
又因为-(1/3)^(n+1)*(2n-1)<0
2/3Tn<2/3
Tn<1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
⑴∵Sn=n^2∴ Sn-1=(n-1)^2(n≥2)∴an=Sn-Sn-1=2n-1(n≥2)a1=1满足∴an=2n-1
⑵∴bn=(1/3)^n*an=n×(1/3)^(2n-1)
Tn=T1+T2+T3+……+Tn
=1·(1/3)^1+2·(1/3)^3+……+n×(1/3)^(2n-1)①
∴(1/9)Tn= =1·(1/3)^3+2·(1/3)^5+……+n×(1/3)^(2n+1)②
①-②得(8/9)Tn=(1/3)^1+(1/3)^3+……+(1/3)^(2n-1)-n(1/3)^(2n+1)求出Tn后,简单判断一下,即可得到结果。
⑵∴bn=(1/3)^n*an=n×(1/3)^(2n-1)
Tn=T1+T2+T3+……+Tn
=1·(1/3)^1+2·(1/3)^3+……+n×(1/3)^(2n-1)①
∴(1/9)Tn= =1·(1/3)^3+2·(1/3)^5+……+n×(1/3)^(2n+1)②
①-②得(8/9)Tn=(1/3)^1+(1/3)^3+……+(1/3)^(2n-1)-n(1/3)^(2n+1)求出Tn后,简单判断一下,即可得到结果。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询