已知函数f(x)=x3+(1-a)x2-a(a+2)x+b
已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).(1)若函数f(x)的图象过原点,且在原点处的切线斜率是-3,求a,b的值;(2)若函数f(x)...
已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).
(1)若函数f(x)的图象过原点,且在原点处的切线斜率是-3,求a,b的值;
(2)若函数f(x)的区间(-1, 1)上不单调,求a的取值范围.
求过程!谢啦 展开
(1)若函数f(x)的图象过原点,且在原点处的切线斜率是-3,求a,b的值;
(2)若函数f(x)的区间(-1, 1)上不单调,求a的取值范围.
求过程!谢啦 展开
1个回答
展开全部
f(x)=x^3+(1-a)x^2-a(a+2)x+b
^表示次方
1)函数f(x)的图象过原点,那么f(0)=0
所以0=0+b
b=0
f'(x)=3x^2+2(1-a)x-a(a+2)
f'(0)=-a(a+2)=-3
(a+3)(a-1)=0
所以a=1或者-3
综上b=0 a=1或者-3
2)
据题意f(x)【至少】有一个极值点在区间(-1,1)内,
由于f'(x)=3x^2+2(1-a)x-a(a+2)=(x-a)[3x+(a+2)],
a≠-1/2时,f(x)有两个不相同的极值点x1=a和x2=-(a+2)/3,
①a=-1/2时,f(x)严格单调增加
②-1<x1<1,即 -1<a<1;
③-1<x2<1,即-1<-(a+2)/3<1,可得-5<a<1,
综合①、②、③,可得a的取值范围是{-5<a<-1/2}∪{-1/2<a<1}
^表示次方
1)函数f(x)的图象过原点,那么f(0)=0
所以0=0+b
b=0
f'(x)=3x^2+2(1-a)x-a(a+2)
f'(0)=-a(a+2)=-3
(a+3)(a-1)=0
所以a=1或者-3
综上b=0 a=1或者-3
2)
据题意f(x)【至少】有一个极值点在区间(-1,1)内,
由于f'(x)=3x^2+2(1-a)x-a(a+2)=(x-a)[3x+(a+2)],
a≠-1/2时,f(x)有两个不相同的极值点x1=a和x2=-(a+2)/3,
①a=-1/2时,f(x)严格单调增加
②-1<x1<1,即 -1<a<1;
③-1<x2<1,即-1<-(a+2)/3<1,可得-5<a<1,
综合①、②、③,可得a的取值范围是{-5<a<-1/2}∪{-1/2<a<1}
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询