用初等行变换求出齐次线性方程组的解,最好可以写出全过程
1个回答
展开全部
(2) 系数矩阵 A =
[2 3 -1 -7]
[3 1 2 -7]
[4 1 -3 6]
[1 -2 5 -5]
初等行变换为
[1 -2 5 -5]
[0 7 -11 3]
[0 7 -13 8]
[0 9 -23 26]
初等行变换为
[1 -2 5 -5]
[0 7 -11 3]
[0 0 -2 5]
[0 63 -161 182]
初等行变换为
[1 -2 5 -5]
[0 7 -11 3]
[0 0 -2 5]
[0 0 -62 155]
初等行变换为
[1 -2 5 -5]
[0 7 -11 3]
[0 0 2 -5]
[0 0 0 0]
方程组同解变形为
x1-2x2+5x3 = 5x4
7x2-11x3 = -3x4
2x3 = 5x4
取 自由未知量 x4 = 2,得 x3 = 5, x2 = 7, x1 = -1
基础解系为 (-1 7 5 2)^T
通解 为 x = k(-1 7 5 2)^T
另一题仿作即可。
[2 3 -1 -7]
[3 1 2 -7]
[4 1 -3 6]
[1 -2 5 -5]
初等行变换为
[1 -2 5 -5]
[0 7 -11 3]
[0 7 -13 8]
[0 9 -23 26]
初等行变换为
[1 -2 5 -5]
[0 7 -11 3]
[0 0 -2 5]
[0 63 -161 182]
初等行变换为
[1 -2 5 -5]
[0 7 -11 3]
[0 0 -2 5]
[0 0 -62 155]
初等行变换为
[1 -2 5 -5]
[0 7 -11 3]
[0 0 2 -5]
[0 0 0 0]
方程组同解变形为
x1-2x2+5x3 = 5x4
7x2-11x3 = -3x4
2x3 = 5x4
取 自由未知量 x4 = 2,得 x3 = 5, x2 = 7, x1 = -1
基础解系为 (-1 7 5 2)^T
通解 为 x = k(-1 7 5 2)^T
另一题仿作即可。
追问
另一题的初等行变换可以麻烦你写出来吗?
追答
(1) 系数矩阵 A =
[1 1 2 -1]
[2 1 1 -1]
[2 2 1 2]
初等行变换为
[1 1 2 -1]
[0 -1 -3 1]
[0 0 -3 4]
初等行变换为
[1 0 -1 0]
[0 1 3 -1]
[0 0 3 -4]
方程组同解变形为
x1 - x3 = 0
x2 +3x3 = x4
3x3 = 4x4
取 自由未知量 x4 = 3,得 x3 = 4, x2 = -9, x1 = 4
基础解系为 (4, -9, 4, 3)^T
通解 为 x = k (4, -9, 4, 3)^T。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询