考研数学二习题求解,请问表达式是如何得来的?

 我来答
斛瑾瑶0iD
2016-12-22 · TA获得超过412个赞
知道小有建树答主
回答量:1342
采纳率:0%
帮助的人:305万
展开全部
3.代入使f'(x) = 0的两个点:-2、1/3 ,得到:
f(x)min = f(-2) = -13/e^2 ,f(x)max = f(1/3) = e^(1/3) ,
θ= π/4时 ,求证式即0 < 2 ,显然成立,
0 < θ< π/4时 ,0 < sinθ< cosθ< 1/3 ,
|f(cosθ)-f(sinθ)| = f(cosθ)-f(sinθ) < f(1/3) - f(√2/2)
= e^(1/3) - [(√2 - 1)/2]·e^(√2/2) < 2 ,
同理可证 ,当π/4<θ<π/2时 ,不等式仍成立 ,故得证。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式