富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
我觉得把这个定积分看成标准正态分布的概率密度就好了。对于概率密度fx有性质:积分正∞到负∞的值为1。所以结果就是u了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(z) =σz.e^(-z^2/2)
f(-z)= -f(z)
=> ∫(-∞->+∞) σz.e^(-z^2/2) dz =0
[1/√(2π) ]∫(-∞->+∞) e^(-z^2/2) dz =1
=>∫(-∞->+∞) e^(-z^2/2) dz = √(2π)
[1/√(2π) ]∫(-∞->+∞) (σz+μ) e^(-z^2/2) dz
=[1/√(2π) ]∫(-∞->+∞) σz.e^(-z^2/2) dz +[1/√(2π) ]∫(-∞->+∞) μ.e^(-z^2/2) dz
=[1/√(2π) ]∫(-∞->+∞) μ.e^(-z^2/2) dz
=μ
f(-z)= -f(z)
=> ∫(-∞->+∞) σz.e^(-z^2/2) dz =0
[1/√(2π) ]∫(-∞->+∞) e^(-z^2/2) dz =1
=>∫(-∞->+∞) e^(-z^2/2) dz = √(2π)
[1/√(2π) ]∫(-∞->+∞) (σz+μ) e^(-z^2/2) dz
=[1/√(2π) ]∫(-∞->+∞) σz.e^(-z^2/2) dz +[1/√(2π) ]∫(-∞->+∞) μ.e^(-z^2/2) dz
=[1/√(2π) ]∫(-∞->+∞) μ.e^(-z^2/2) dz
=μ
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询