4个回答
展开全部
原式=(1/2)∫<0,π/2>xd(sin²x)/[a²(1-sin²x)+b²sin²x]²
=(1/2)∫<0,π/2>xd(sin²x)/[a²+(b²-a²)sin²x]²
=[1/2(b²-a²)]∫<0,π/2>xd[a²+(b²-a²)sin²x]/[a²+(b²-a²)sin²x]²
=[1/2(a²-b²)]∫<0,π/2>xd{1/[a²+(b²-a²)sin²x]}
=[1/2(a²-b²)][x/[a²+(b²-a²)sin²x]<0,π/2>-∫<0,π/2>[1/a²+(b²-a²)sin²x]dx]
=[1/2(a²-b²)][(π/2b²)-∫<0,π/2>[(sin²x+cos²x)/(a²cos²x+b²sin²x)]dx]
=[1/2(a²-b²)][(π/2b²)-∫<0,π/2>][(tan²x+1)/(a²+b²tan²x)]dx]
=[1/2(a²-b²)][(π/2b²)-∫<0,π/2>[sec²x/(a²+b²tan²x)]dx]
=[1/2(a²-b²)][(π/2b²)-∫<0,π/2>[1/(a²+b²tan²x)]d(tanx)]
=[1/2(a²-b²)][(π/2b²)-(1/ab)∫<0,π/2>[1/(1+(b/atanx)²]d((b/atanx)]
=[1/2(a²-b²)][(π/2b²)-(1/ab)arctan[(b/a)tanx]<0,π/2>]
=[1/2(a²-b²)][(π/2b²)-(1/ab)·(π/2)]
=π/[4ab²(a+b)]
=(1/2)∫<0,π/2>xd(sin²x)/[a²+(b²-a²)sin²x]²
=[1/2(b²-a²)]∫<0,π/2>xd[a²+(b²-a²)sin²x]/[a²+(b²-a²)sin²x]²
=[1/2(a²-b²)]∫<0,π/2>xd{1/[a²+(b²-a²)sin²x]}
=[1/2(a²-b²)][x/[a²+(b²-a²)sin²x]<0,π/2>-∫<0,π/2>[1/a²+(b²-a²)sin²x]dx]
=[1/2(a²-b²)][(π/2b²)-∫<0,π/2>[(sin²x+cos²x)/(a²cos²x+b²sin²x)]dx]
=[1/2(a²-b²)][(π/2b²)-∫<0,π/2>][(tan²x+1)/(a²+b²tan²x)]dx]
=[1/2(a²-b²)][(π/2b²)-∫<0,π/2>[sec²x/(a²+b²tan²x)]dx]
=[1/2(a²-b²)][(π/2b²)-∫<0,π/2>[1/(a²+b²tan²x)]d(tanx)]
=[1/2(a²-b²)][(π/2b²)-(1/ab)∫<0,π/2>[1/(1+(b/atanx)²]d((b/atanx)]
=[1/2(a²-b²)][(π/2b²)-(1/ab)arctan[(b/a)tanx]<0,π/2>]
=[1/2(a²-b²)][(π/2b²)-(1/ab)·(π/2)]
=π/[4ab²(a+b)]
追问
谢谢 只能采纳一个
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你看这道题,我就想到了一个定力,我这个定理就是数学题永远不会看到的数学题,我哪天就淌。所以我告诉你最好的办法解这道题的方法就是拿打火机给他烧了,你就会了。希望我的回答对您有帮助,麻烦采纳,谢谢!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我感觉这题没有答案。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询