高二数学 圆和方程最值问题
1个回答
展开全部
由已知条件可构造图形x^2+y^2=25(y≤0)
所以(1)求的是在该图形上的点到点(5,10)的斜率范围
两个值分别在相切的位置与(-5,0)的时候取到
范围为【1/3,4/3】
(2)(-3,2)在圆x^2+y^2=25的内部,所以(-3,2)与原点(x^2+y^2=25的圆心)的连线与已知图形的交点为最大值,即根号13+5
(3)设x+y-3=k
y=-x+k+3
所以将y=-x一类的直线上下平移,得到相切的时候有最小值k+3=-5根号2
所以k=-5根号2-3
如果还有不懂的地方,可以直接联系我,毕竟过程还是挺长的。
所以(1)求的是在该图形上的点到点(5,10)的斜率范围
两个值分别在相切的位置与(-5,0)的时候取到
范围为【1/3,4/3】
(2)(-3,2)在圆x^2+y^2=25的内部,所以(-3,2)与原点(x^2+y^2=25的圆心)的连线与已知图形的交点为最大值,即根号13+5
(3)设x+y-3=k
y=-x+k+3
所以将y=-x一类的直线上下平移,得到相切的时候有最小值k+3=-5根号2
所以k=-5根号2-3
如果还有不懂的地方,可以直接联系我,毕竟过程还是挺长的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询