高中简单数学 5

已知椭圆的中心是O,长轴.短轴的长分别为2a,2b(a大于b大于0),A,B分别为椭圆上的两点,而且OA垂直于OB求证1/OA的绝对值+1/OB的绝对值为定值... 已知椭圆的中心是O,长轴.短轴的长分别为2a,2b(a大于b大于0),A,B分别为椭圆上的两点,而且OA垂直于OB
求证 1/OA的绝对值+1/OB的绝对值 为定值
展开
zxqsyr
2010-08-11 · TA获得超过14.4万个赞
知道大有可为答主
回答量:3.3万
采纳率:71%
帮助的人:1.6亿
展开全部
设OA的所在直线方程为y=kx,则OB所在直线方程为y=-x/k;
它们与椭圆的交点A、B坐标(xa,ya)、(xb,yb)满足
xa^2=1/[1/a^2+k^2/b^2]
ya^2=k^2/[1/a^2+k^2/b^2]
xb^2=1/[1/a^2+1/(k^2b^2)]
yb^2=1/[k^2/a^2+1/b^2]
OA^2=xa^2+ya^2=(1+k^2)/[1/a^2+k^2/b^2]
OB^2=xb^2+yb^2=(1+1/k^2)/[1/a^2+1/(k^2b^2)]
1/OA^2+1/OB^2=[1/a^2+k^2/b^2]/(1+k^2)+[1/a^2+1/(k^2b^2)]*k^2/(1+k^2)
=1/a^2+1/b^2为定值。

=======================================================
以中心为极点,x轴为极轴建立极坐标系
方程为ρ^2(cosθ)^2/a^2+ρ^2(sinθ)^2/b^2=1
1/ρ^2=(cosθ)^2/a^2+(sinθ)^2/b^2
设A(ρ1,θ),由OA⊥OB得B(ρ2,θ+π/2)
1/OA^2+1/OB^2=1/ρ1^2+1/ρ2^2
=(cosθ)^2/a^2+(sinθ)^2/b^2+(cos(θ+π/2))^2/a^2+(sin(θ+π/2))^2/b^2
=(cosθ)^2/a^2+(sinθ)^2/b^2+(sinθ)^2/a^2+(cosθ)^2/b^2
=1/a^2+1/b^2

参考资料: http://zhidao.baidu.com/question/95345611.html

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式