(lnx)^2的不定积分是什么?

 我来答
旅游小达人Ky
高粉答主

2022-02-05 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:1893
采纳率:100%
帮助的人:38.4万
展开全部

(lnx)^2的不定积分是=x(lnx)^2-2xinx+2x+C。

∫(lnx)^2dx

=x(lnx)^2-∫xd(lnx)^2

=x(lnx)^2-∫x*(2lnx)*(1/x)dx

=x(lnx)^2-2∫lnxdx

=x(lnx)^2-2xinx+2∫xdlnx

=x(lnx)^2-2xinx+2x+C

证明

如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x).即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式