ARIMA模型

 我来答
大沈他次苹0B
2022-06-09 · TA获得超过7322个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:177万
展开全部
我看过的对ARMIA模型最简单明了的文章:https://www.cnblogs.com/bradleon/p/6827109.html

1,什么是 ARIMA模型

ARIMA模型的全称叫做自回归移动平均模型,全称是(ARIMA, Autoregressive Integrated Moving Average Model)。也记作ARIMA(p,d,q),是统计模型(statistic model)中最常见的一种用来进行时间序列 预测的模型。

1.1. ARIMA的优缺点

优点: 模型十分简单,只需要内生变量而不需要借助其他外生变量。(所谓内生变量指的应该是仅依赖于该数据本身,而不像回归需要其他变量)

缺点:

1.要求时序数据是稳定的(stationary),或者是通过差分化(differencing)后是稳定的。

2.本质上只能捕捉线性关系,而不能捕捉非线性关系。

注意,采用ARIMA模型预测时序数据,必须是稳定的,如果不稳定的数据,是无法捕捉到规律的。比如股票数据用ARIMA无法预测的原因就是股票数据是非稳定的,常常受政策和新闻的影响而波动。

1.2. 判断是时序数据是稳定的方法。

严谨的定义: 一个时间序列的随机变量是稳定的,当且仅当它的所有统计特征都是独立于时间的(是关于时间的常量)。

判断的方法:

稳定的数据是没有趋势(trend),没有周期性(seasonality)的; 即它的均值,在时间轴上拥有常量的振幅,并且它的方差,在时间轴上是趋于同一个稳定的值的。

可以使用Dickey-Fuller Test进行假设检验。

1.3 ARIMA的参数与数学形式

ARIMA模型有三个参数:p,d,q。

p--代表预测模型中采用的时序数据本身的滞后数(lags) ,也叫做AR/Auto-Regressive项

d--代表时序数据需要进行几阶差分化,才是稳定的,也叫Integrated项。

q--代表预测模型中采用的预测误差的滞后数(lags),也叫做MA/Moving Average项

4.ARIMA模型的几个特例

1.ARIMA(0,1,0) = random walk:

当d=1,p和q为0时,叫做random walk,如图所示,每一个时刻的位置,只与上一时刻的位置有关。

预测公式如下:Yˆt=μ+Yt−1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式