设A,B均为正定矩阵,则AB正定当且仅当AB=BA

 我来答
青柠姑娘17
2022-07-09 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6792
采纳率:100%
帮助的人:39.6万
展开全部
用 A* 表示矩阵 A 的共轭转置,其余同.
必要性:设 AB 是正定矩阵,则
AB = (AB)* = B*A* = BA.
充分性:设 AB = BA,则我们已看到
AB = BA = B*A* = (AB)*
即 AB 是 Hermite 矩阵,下面只需证它的特征值都是正的.实际上,存在可逆矩阵 Q 使得
A = QQ*
因此
(Q逆) AB Q = Q* BQ = S
即 AB 相似于 S = Q*BQ,因此AB的特征值就是 S的特征值,而显然 S 是正定的,它的特征值都是正数.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式