判断函数f(x)=1/根号1-2x的单调性,并给出证明

众生相2011
2010-08-12 · TA获得超过318个赞
知道小有建树答主
回答量:110
采纳率:100%
帮助的人:147万
展开全部
该函数是增函数。证明如下:
首先计算函数的定义域,由√(1-2x)是分母可得:
1-2x>0 即x<1/2
在(-∞,1/2)中,令x1<x2<1/2
f(x2)-f(x1)=1/√(1-2x2)-1/√(1-2x1)
=[(√(1-2x1)-√(1-2x2)]/√[(1-2x1)(1-2x2)]
分子有理化得:
f(x2)-f(x1)=[(1-2x1)-(1-2x2)]/√[(1-2x1)(1-2x2)]*[√(1-2x1)+√(1-2x2)]=(2x2-2x1)/{√[(1-2x1)(1-2x2)]*[√(1-2x1)+√(1-2x2)]}
因为分子2x2-2x1>0
分母√[(1-2x1)(1-2x2)]*[√(1-2x1)+√(1-2x2)]>0
所以f(x2)-f(x1)>0
所以原函数是增函数。
a8889784
2010-08-12 · TA获得超过181个赞
知道答主
回答量:41
采纳率:0%
帮助的人:17.2万
展开全部
1-2x递减
1/x递减
所以该函数递增
设x1<x2<1/2带入作差证明太麻烦
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式