如何判断两个连续型随机变量是否相互独立?
1个回答
展开全部
判断两个连续型随机变量是否相互独立:求出边缘概率密度fX、fY,然后看联合概率密度f(x,y)与边缘概率密度fX、fY的乘积是否相等即可。
f(x,y)=fX·fY,则独立,否则,不独立。
对于连续型随机变量有:F(X,Y)=FX(X)FY(Y),f(x,y)=fx(x)fy(y)。
对于离散型随机变量有回:P(AB)=P(A)P(B)。
概率为P设X,Y两随机变量,密答度函数分别为q(x),r(y),分布函数为G(x),H(y),联合密度为p(x,y),联合分布函数F(x,y),A,B为西格玛代数中的任意两个事件。
因而X也是离散型随机变量
如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。比如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3分钟、5分钟7毫秒、7√2分钟,在这十五分钟的时间轴上任取一点,都可能是等车的时间,因而称这随机变量是连续型随机变量。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询