矩阵求逆
1个回答
展开全部
比如:这么一个2*2矩阵
5 -3
-2 2
求它的倒数
2*2矩阵的倒数有如下规律:
次对角线元素加上负号,主对角线元素互换,然后除以原矩阵的行列式。
由此,结论为[2,3;2,5]/4。
一般方法为:
在右边补上的单位阵:
5 -3 1 0
-2 2 0 1
然后通过初等行变换(仅是行变换)把左边的方阵变为单位阵,然后右边的就是逆矩阵。
过程:
A = 5 -3
-2 2
AAˉ1=E
5 -3 | 1 0
-2 2 | 0 1
1 1 | 1 2
0 4 | 2 5
1 1 | 1 2
0 1 | 1/2 5/4
1 0 | 1/2 3/4
0 1 | 1/2 5/4
Aˉ1 = 1/2 3/4
1/2 5/4
5 -3
-2 2
求它的倒数
2*2矩阵的倒数有如下规律:
次对角线元素加上负号,主对角线元素互换,然后除以原矩阵的行列式。
由此,结论为[2,3;2,5]/4。
一般方法为:
在右边补上的单位阵:
5 -3 1 0
-2 2 0 1
然后通过初等行变换(仅是行变换)把左边的方阵变为单位阵,然后右边的就是逆矩阵。
过程:
A = 5 -3
-2 2
AAˉ1=E
5 -3 | 1 0
-2 2 | 0 1
1 1 | 1 2
0 4 | 2 5
1 1 | 1 2
0 1 | 1/2 5/4
1 0 | 1/2 3/4
0 1 | 1/2 5/4
Aˉ1 = 1/2 3/4
1/2 5/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询