如何证明圆内接四边形对角互补

 我来答
风林网络手游平台
2022-12-21 · 百度认证:四川风林网络科技有限公司官方账号
风林网络手游平台
向TA提问
展开全部

首先证∠A+∠C=180

如图所示,连接DO, BO。设∠BOD为360°-θ

∵圆周角等于所对的圆心角的一半。

∴∠C=1/2∠BOD。

同理,∠A=1/2θ。

∴∠A+∠C=1/2*360=180,即两角互补。

同理可证∠ABC+∠ADC=180,所以对角互补。

依据:

①圆周角等于圆心角一半

②圆周角等于360°

扩展资料:

圆的性质

1、一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等。

2、内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。

3、R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。

4、两相切圆的连心线过切点。(连心线:两个圆心相连的直线)

5、圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AC与BD分别交PQ于X,Y,则M为XY之中点。

6、如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。

参考资料来源:百度百科-圆

参考资料来源:百度百科-内接四边形对角互补

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式