求数学大师解答一下第一小问
3个回答
展开全部
第一小问是求的是m值,题目中所给左边四个小长方形的高度从左到右依次构成公比为2的等比数列。故假设第一个小长方形高度为a1,第二个为a1×2,第三个为a1×2^2,第四个为a1×2^3,而第四个高度为m,因此可以求出a1为m/8,第二个为m/4,第三个为m/2,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)m=0 则f(x)=xlnx-x,
∴f(x)的定义域为(0,+∞),
f′(x)=lnx,
由f′(x)>0,得x>1;由f′(x)<0,得0<x<1.
∴f(x)的增区间为(1,+∞),单调减区间为(0,1).
∴x=1时,f(x)极小值=f(1)=-1.
由已知得f(x)的定义域为(0,+∞),f′(x)=lnx,由此利用导数性质能求出函数f(x)的单调区间和极值.
∴f(x)的定义域为(0,+∞),
f′(x)=lnx,
由f′(x)>0,得x>1;由f′(x)<0,得0<x<1.
∴f(x)的增区间为(1,+∞),单调减区间为(0,1).
∴x=1时,f(x)极小值=f(1)=-1.
由已知得f(x)的定义域为(0,+∞),f′(x)=lnx,由此利用导数性质能求出函数f(x)的单调区间和极值.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询