n阶方阵A可逆的充要条件是什么?

 我来答
帐号已注销
2022-09-02 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:164万
展开全部

N阶方阵A为可逆的,重要条件是它的行列式不等于0,一般只要看它的行列式就可以啦。

矩阵可逆=矩阵非奇异=矩阵对应的行列式不为0=满秩=行列向量线性无关。

行列式不为0,首先这个条件显然是必要的。其次当行列式不为0的时候,可以直接构造出逆矩阵,于是充分。

具体构造方法每本书上都有,大体上是用行列式按行列展开定理,即对矩阵A,元素写为a_ij,则sigma(j)a_ij*M_kj=detA*delta_ik,其中M_ij为代数余子式,于是B_ij=M_ji/detA即为A的逆矩阵。

扩展资料:

线性代数中,给定一个 n 阶方阵 A,若存在一 n 阶方阵 B 使得 AB = BA = In,其中 In 为 n 阶单位矩阵,则称 A 是可逆的,且 B 是 A 的逆阵,记作 A 。

若方阵 A 的逆阵存在,则称 A 为非奇异方阵或可逆方阵。

参考资料来源:百度百科-可逆

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式